
ModelSim®

A d v a n c e d V e r i f i c a t i o n a n d D e b u g g i n g
SE
User’s Manual

V e r s i o n 6 . 0 b

P u b l i s h e d : 1 5 / N o v / 0 4

UM-2

Model
This document is for information and instruction purposes. Mentor Graphics reserves the
right to make changes in specifications and other information contained in this publication
without prior notice, and the reader should, in all cases, consult Mentor Graphics to
determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are
set forth in written agreements between Mentor Graphics and its customers. No
representation or other affirmation of fact contained in this publication shall be deemed to
be a warranty or give rise to any liability of Mentor Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR
RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been
developed entirely at private expense and are commercial computer software provided with
restricted rights. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement
provided with the software pursuant to DFARS 227.7202-3(a) or as set forth in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:

Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Contacting ModelSim Support

Telephone: 503.685.0820

Toll-Free Telephone: 877-744-6699

Website: www.model.com

Support: www.model.com/support
Sim SE User’s Manual

 UM-3
Table of Contents

1 - Introduction (UM-21)

ModelSim tool structure and verification flow . UM-22

ModelSim simulation task overview . . UM-23

Basic steps for simulation . UM-24
Step 1 - Collecting Files and Mapping Libraries UM-24
Step 2 - Compiling the design with vlog/vcom/sccom UM-25
Step 3 - Loading the design for simulation UM-26
Step 4 - Simulating the design . UM-26
Step 5- Debugging the design . . UM-26

ModelSim modes of operation . UM-27
Command-line mode . UM-27
Batch mode . . UM-28

ModelSim graphic interface overview . UM-29

Standards supported . UM-30

Assumptions . UM-30

Sections in this document . UM-31

What is an "object" . UM-34

Text conventions . UM-34

Where to find our documentation . UM-35
Download a free PDF reader with Search . UM-35

Technical support and updates . UM-36

2 - Projects (UM-37)

Introduction . UM-38
What are projects? . UM-38
What are the benefits of projects? . UM-38
Project conversion between versions . UM-39

Getting started with projects . UM-40
Step 1 — Creating a new project . UM-40
Step 2 — Adding items to the project . UM-41
Step 3 — Compiling the files . . UM-43
Step 4 — Simulating a design . UM-44
Other basic project operations . UM-44

The Project tab . UM-45
Sorting the list . . UM-45

Changing compile order . UM-46
Auto-generating compile order . UM-46
Grouping files . . UM-47

Creating a Simulation Configuration . . UM-48
Optimization Configurations . UM-49
ModelSim SE User’s Manual

UM-4 Table of Contents

Model
Organizing projects with folders . UM-50
Adding a folder . UM-50

Specifying file properties and project settings . UM-52
File compilation properties . . UM-52
Project settings . UM-54

Accessing projects from the command line . UM-55

3 - Design libraries (UM-57)

Design library overview . UM-58
Design unit information . UM-58
Working library versus resource libraries . UM-58
Archives . UM-59

Working with design libraries . UM-60
Creating a library . UM-60
Managing library contents . UM-61
Assigning a logical name to a design library UM-62
Moving a library . . UM-63
Setting up libraries for group use . UM-63

Specifying the resource libraries . UM-64
Verilog resource libraries . UM-64
VHDL resource libraries . UM-64
Predefined libraries . . UM-64
Alternate IEEE libraries supplied . UM-65
Rebuilding supplied libraries . UM-65
Regenerating your design libraries . . UM-66
Maintaining 32-bit and 64-bit versions in the same library UM-66

Referencing source files with location maps . . UM-67
Using location mapping . UM-67
Pathname syntax . . UM-68
How location mapping works . . UM-68
Mapping with Tcl variables . UM-68

Importing FPGA libraries . UM-69

Protecting source code using -nodebug . . UM-70

4 - VHDL simulation (UM-71)

Compiling VHDL files . UM-73
Creating a design library . UM-73
Invoking the VHDL compiler . UM-73
Dependency checking . . UM-73
Range and index checking . UM-74
Subprogram inlining . UM-74
Differences between language versions . . UM-75

Simulating VHDL designs . . UM-78
Simulator resolution limit . UM-78
Default binding . UM-79
Sim SE User’s Manual

 UM-5
Delta delays . UM-80

Simulating with an elaboration file . UM-82
Overview . UM-82
Elaboration file flow . UM-82
Creating an elaboration file . UM-83
Loading an elaboration file . . UM-83
Modifying stimulus . UM-84
Using with the PLI or FLI . UM-84
Syntax . . UM-84
Example . UM-85

Checkpointing and restoring simulations . UM-86
Checkpoint file contents . . UM-86
Controlling checkpoint file compression . UM-87
The difference between checkpoint/restore and restart UM-87
Using macros with restart and checkpoint/restore UM-87

Using the TextIO package . . UM-88
Syntax for file declaration . UM-88
Using STD_INPUT and STD_OUTPUT within ModelSim UM-89

TextIO implementation issues . UM-90
Writing strings and aggregates . UM-90
Reading and writing hexadecimal numbers UM-91
Dangling pointers . UM-91
The ENDLINE function . . UM-91
The ENDFILE function . UM-91
Using alternative input/output files . UM-92
Flushing the TEXTIO buffer . UM-92
Providing stimulus . UM-92

VITAL specification and source code . UM-93

VITAL packages . UM-93

ModelSim VITAL compliance . UM-93
VITAL compliance checking . . UM-94
VITAL compliance warnings . . UM-94

Compiling and simulating with accelerated VITAL packages UM-95
Compiler options for VITAL optimization UM-95

Util package . UM-96
get_resolution . . UM-96
init_signal_driver() . . UM-97
init_signal_spy() . . UM-97
signal_force() . UM-97
signal_release() . UM-97
to_real() . UM-98
to_time() . . UM-99

Foreign language interface . UM-100

Modeling memory . UM-101
’87 and ’93 example . UM-101
’02 example . UM-104

Affecting performance by cancelling scheduled events UM-108
ModelSim SE User’s Manual

UM-6 Table of Contents

Model
Converting an integer into a bit_vector . UM-109

5 - Verilog simulation (UM-111)

Introduction . UM-113
ModelSim Verilog basic flow . UM-113

Compiling Verilog files . UM-114
Creating a design library . UM-114
Invoking the Verilog compiler . UM-114
Incremental compilation . UM-115
Library usage . UM-117
Verilog-XL compatible compiler arguments UM-119
Verilog-XL `uselib compiler directive . UM-120
Verilog configurations . UM-122
Verilog generate statements . UM-123

Optimizing Verilog designs . UM-124
Running vopt on your design . UM-124
Naming the optimized design . UM-125
Making the optimized flow the default . UM-125
Enabling design object visibility with the +acc option UM-126
Optimizing gate-level designs . UM-127
Event order and optimized designs . UM-128
Timing checks in optimized designs . UM-128

Simulating Verilog designs . UM-129
Simulator resolution limit . UM-129
Event ordering in Verilog designs . UM-132
Negative timing check limits . UM-136
Verilog-XL compatible simulator arguments UM-136

Simulating with an elaboration file . UM-138
Overview . UM-138
Elaboration file flow . UM-138
Creating an elaboration file . UM-139
Loading an elaboration file . UM-139
Modifying stimulus . UM-140
Using with the PLI or FLI . UM-140
Syntax . UM-140
Example . UM-141

Checkpointing and restoring simulations . UM-142
Checkpoint file contents . UM-142
Controlling checkpoint file compression UM-143
The difference between checkpoint/restore and restart UM-143
Using macros with restart and checkpoint/restore UM-143

Cell libraries . UM-144
SDF timing annotation . UM-144
Delay modes . UM-144

System tasks and functions . UM-146
IEEE Std 1364 system tasks and functions UM-146
Verilog-XL compatible system tasks and functions UM-150
Sim SE User’s Manual

 UM-7
ModelSim Verilog system tasks and functions UM-152

Compiler directives . UM-153
IEEE Std 1364 compiler directives . UM-153
Verilog-XL compatible compiler directives UM-154
ModelSim compiler directives . UM-155

Sparse memory modeling . UM-156
Manually marking sparse memories . UM-156
Automatically enabling sparse memories UM-156
Combining automatic and manual modes UM-156
Determining which memories were implemented as sparse UM-157
Limitations . UM-157

Verilog PLI/VPI and SystemVerilog DPI . UM-158

6 - SystemC simulation (UM-159)

Introduction . UM-160

Supported platforms and compiler versions . UM-161
Building gcc with custom configuration options UM-161
HP Limitations for SystemC . UM-162

Usage flow for SystemC-only designs . UM-163

Compiling SystemC files . UM-164
Creating a design library . UM-164
Modifying SystemC source code . UM-164
Code modification examples . UM-165
Invoking the SystemC compiler . UM-167
Compiling optimized and/or debug code UM-167
Specifying an alternate g++ installation . UM-168
Maintaining portability between OSCI and ModelSim UM-168
Restrictions on compiling with HP aCC UM-169
Switching platforms and compilation . UM-169
Using sccom vs. raw C++ compiler . UM-170
Issues with C++ templates . UM-171

Linking the compiled source . UM-172
sccom -link . UM-172

Simulating SystemC designs . UM-173
Loading the design . UM-173
Running simulation . UM-173
Simulator resolution limit . UM-174
Initialization and cleanup of SystemC state-based code UM-175

Debugging the design . UM-176
Viewable SystemC objects . UM-176
Waveform compare . UM-177
Source-level debug . UM-178

SystemC object and type display in ModelSim UM-180
Support for aggregates . UM-180
Viewing FIFOs . UM-181
ModelSim SE User’s Manual

UM-8 Table of Contents

Model
Differences between ModelSim and the OSCI simulator UM-182
Fixed point types . UM-182
OSCI 2.1 features supported . UM-183

Troubleshooting SystemC errors . UM-184
Unexplained behaviors during loading or runtime UM-184
Errors during loading . UM-184

7 - Mixed-language simulation (UM-187)

Usage flow for mixed-language simulations . UM-189

Separate compilers, common design libraries UM-190
Access limitations in mixed-language designs UM-190
Optimizing mixed designs . UM-190
Simulator resolution limit . UM-191
Runtime modeling semantics . UM-191
Hierarchical references in mixed HDL/SystemC designs UM-192

Mapping data types . UM-193
Verilog to VHDL mappings . UM-193
VHDL to Verilog mappings . UM-195
Verilog and SystemC signal interaction and mappings UM-196
VHDL and SystemC signal interaction and mappings UM-200

VHDL: instantiating Verilog . UM-203
Verilog instantiation criteria . UM-203
Component declaration . UM-203
vgencomp component declaration . UM-204
Modules with unnamed ports . UM-206

Verilog: instantiating VHDL . UM-207
VHDL instantiation criteria . UM-207
Entity/architecture names and escaped identifiers UM-207
Named port associations . UM-207
Generic associations . UM-207
SDF annotation . UM-208

SystemC: instantiating Verilog . UM-209
Verilog instantiation criteria . UM-209
SystemC foreign module declaration . UM-209
Parameter support for SystemC instantiating Verilog UM-211
Example of parameter use . UM-212

Verilog: instantiating SystemC . UM-214
SystemC instantiation criteria . UM-214
Exporting SystemC modules . UM-214
Parameter support for Verilog instantiating SystemC UM-214
Example of parameter use . UM-215

SystemC: instantiating VHDL . UM-217
VHDL instantiation criteria . UM-217
SystemC foreign module declaration . UM-217
Generic support for SystemC instantiating VHDL UM-218
Example of generic use . UM-219
Sim SE User’s Manual

 UM-9
VHDL: instantiating SystemC . UM-222
SystemC instantiation criteria . UM-222
Component declaration . UM-222
vgencomp component declaration . UM-223
Exporting SystemC modules . UM-223
sccom -link . UM-223
Generic support for VHDL instantiating SystemC UM-223

8 - WLF files (datasets) and virtuals (UM-225)

WLF files (datasets) . UM-226
Saving a simulation to a WLF file . UM-227
Opening datasets . UM-227
Viewing dataset structure . UM-228
Managing multiple datasets . UM-229
Saving at intervals with Dataset Snapshot UM-231
Collapsing time and delta steps . UM-232

Virtual Objects (User-defined buses, and more) UM-233
Virtual signals . UM-233
Virtual functions . UM-234
Virtual regions . UM-235
Virtual types . UM-235

9 - Waveform analysis (UM-237)

Introduction . UM-239
Objects you can view . UM-239

Wave window overview . UM-240

List window overview . UM-243

Adding objects to the Wave or List window . UM-244
Adding objects with drag and drop . UM-244
Adding objects with a menu command . UM-244
Adding objects with a command . UM-244
Adding objects with a window format file UM-244

Measuring time with cursors in the Wave window UM-245
Working with cursors . UM-245
Understanding cursor behavior . UM-246
Jumping to a signal transition . UM-247

Setting time markers in the List window . UM-248
Working with markers . UM-248

Zooming the Wave window display . UM-249
Zooming with menu commands . UM-249
Zooming with toolbar buttons . UM-249
Zooming with the mouse . UM-249
Saving zoom range and scroll position with bookmarks UM-250

Searching in the Wave and List windows . UM-251
Finding signal names . UM-251
ModelSim SE User’s Manual

UM-10 Table of Contents

Model
Searching for values or transitions . UM-252
Using the Expression Builder for expression searches UM-253

Formatting the Wave window . UM-255
Setting Wave window display properties UM-255
Formatting objects in the Wave window UM-255
Dividing the Wave window . UM-256
Splitting Wave window panes . UM-257

Formatting the List window . UM-259
Setting List window display properties . UM-259
Formatting objects in the List window . UM-259

Saving the window format . UM-261

Printing and saving waveforms in the Wave window UM-262
Saving a .eps file and printing under UNIX UM-262
Printing on Windows platforms . UM-262
Printer page setup . UM-262

Saving List window data to a file . UM-263

Combining objects/creating busses . UM-264
Example . UM-264

Configuring new line triggering in the List window UM-265
Using gating expressions to control triggering UM-266
Sampling signals at a clock change . UM-268

Miscellaneous tasks . UM-269
Examining waveform values . UM-269
Displaying drivers of the selected waveform UM-269
Sorting a group of objects in the Wave window UM-269
Setting signal breakpoints in the Wave window UM-269

Waveform Compare . UM-270
Mixed-language waveform compare support UM-270
Three options for setting up a comparison UM-270
Setting up a comparison with the GUI . UM-271
Starting a waveform comparison . UM-272
Adding signals, regions, and clocks . UM-274
Specifying the comparison method . UM-276
Setting compare options . UM-278
Viewing differences in the Wave window UM-279
Viewing differences in the List window UM-281
Viewing differences in textual format . UM-282
Saving and reloading comparison results UM-282
Comparing hierarchical and flattened designs UM-283

10 - Generating stimulus with Waveform Editor (GR-285)

Introduction .GR-286
Limitations . .GR-286

Getting started .GR-287
Using Waveform Editor prior to loading a designGR-287
Using Waveform Editor after loading a design GR-288
Sim SE User’s Manual

 UM-11
Creating waveforms from patterns .GR-289

Editing waveforms . .GR-290
Selecting parts of the waveform . .GR-291
Stretching and moving edges . .GR-292

Simulating directly from waveform editor .GR-293

Exporting waveforms to a stimulus file . .GR-294

Driving simulation with the saved stimulus file GR-295
Signal mapping and importing EVCD files GR-295

Using Waveform Compare with created waveformsGR-296

Saving the waveform editor commands .GR-297

11 - Tracing signals with the Dataflow window (UM-299)

Dataflow window overview . UM-300
Objects you can view . UM-300

Adding objects to the window . UM-301

Links to other windows . UM-302

Exploring the connectivity of your design . UM-303
Tracking your path through the design . UM-303

The embedded wave viewer . UM-304

Zooming and panning . UM-305
Zooming with toolbar buttons . UM-305
Zooming with the mouse . UM-305
Panning with the mouse . UM-305

Tracing events (causality) . UM-306

Tracing the source of an unknown (X) . UM-307

Finding objects by name in the Dataflow window UM-309

Printing and saving the display . UM-310
Saving a .eps file and printing under UNIX UM-310
Printing on Windows platforms . UM-311

Configuring page setup . UM-312

Symbol mapping . UM-313

Configuring window options . UM-315

12 - Profiling performance and memory use (UM-317)

Platform information . UM-317

Introducing performance and memory profiling UM-318
A statistical sampling profiler . UM-318
A memory allocation profiler . UM-318

Getting started . UM-319
Enabling the memory allocation profiler UM-319
Enabling the statistical sampling profiler UM-321
ModelSim SE User’s Manual

UM-12 Table of Contents

Model
Collecting memory allocation and performance data UM-321
Running the profiler on Windows with FLI/PLI/VPI code UM-322

Interpreting profiler data . UM-323

Viewing profiler results . UM-324
The Ranked View . UM-324
The Call Tree view . UM-325
The Structural View . UM-326

Viewing profile details . UM-327

Integration with Source windows . UM-329

Analyzing C code performance . UM-330

Reporting profiler results . UM-331

13 - Measuring code coverage (UM-333)

Introduction . UM-334
Usage flow for code coverage . UM-334
Supported types . UM-335
Important notes about coverage statistics UM-336

Enabling code coverage . UM-337

Viewing coverage data in the Main window . UM-340

Viewing coverage data in the Source window UM-341

Toggle coverage . UM-343
Enabling Toggle coverage . UM-343
Excluding nodes from Toggle coverage . UM-344
Viewing toggle coverage data in the Objects pane UM-344
Toggle coverage reporting . UM-344

Filtering coverage data . UM-346

Excluding objects from coverage . UM-347
Excluding lines/files via the GUI . UM-347
Excluding lines/files with pragmas . UM-347
Excluding lines/files with a filter file . UM-348
Excluding condition and expression udp truth table lines and rows UM-349
Excluding lines and rows with the coverage exclude command UM-349
Excluding nodes from toggle statistics . UM-349

Reporting coverage data . UM-350
XML output . UM-351
Sample reports . UM-352

Saving and reloading coverage data . UM-354
From the command line . UM-354
From the graphic interface . UM-354
With the vcover utility . UM-354

Coverage statistics details . UM-355
Condition coverage . UM-355
Expression coverage . UM-356
Sim SE User’s Manual

 UM-13
14 - PSL Assertions (UM-359)

What are assertions? . UM-360
Definition . UM-360
Types of assertions . UM-360
PSL assertion language . UM-361

Using assertions in ModelSim . UM-362
Assertion flow . UM-362
Limitations . UM-362
Using cover directives . UM-363
Processing assume directives in simulation UM-363

Embedding assertions in your code . UM-364
Syntax . UM-364
Restrictions . UM-364
Example . UM-364
HDL code inside PSL statements . UM-365

Writing assertions in an external file . UM-366
Syntax . UM-366
Restrictions . UM-366
Example . UM-366
Inserting VHDL library and use clauses in external assertions files UM-367

Understanding clock declarations . UM-368
Default clock . UM-368
Partially clocked properties . UM-368
Multi-clocked properties and default clock UM-369

Understanding assertion names . UM-370

Using endpoints in HDL code . UM-371
Examples . UM-371
Restrictions . UM-373
Clocking endpoints . UM-373

General assertion writing guidelines . UM-374

Compiling and simulating assertions . UM-375
Embedded assertions . UM-375
External assertions file . UM-375
Making changes to assertions . UM-375
Simulating assertions . UM-375

Managing assertions . UM-376
Viewing assertions in the Assertions pane UM-376
Enabling/disabling failure and pass checking UM-377
Enabling/disabling failure and pass logging UM-378
Setting failure and pass limits . UM-379
Setting failure action . UM-380

Reporting on assertions . UM-381
Specifying an alternative output file for assertion messages UM-381

Viewing assertions in the Wave window . UM-382
Assertion ’signals’ . UM-382
ModelSim SE User’s Manual

UM-14 Table of Contents

Model
15 - Functional coverage with PSL and ModelSim (UM-383)

Introduction . UM-384

Compiling and simulating functional coverage directives UM-385

Configuring functional coverage directives . UM-386
Weighting coverage directives . UM-387
Choosing "AtLeast" counts . UM-387

Viewing functional coverage statistics . UM-388
Filtering data in the pane . UM-388

Viewing coverage directives in the Wave window UM-389
Displaying waveforms in "count" mode . UM-390

Reporting functional coverage statistics . UM-391
Sample report output . UM-392
Understanding aggregated statistics . UM-393
Limitations . UM-394

Saving functional coverage data . UM-395

Reloading/merging functional coverage data UM-396
Merging details . UM-396
Merging results "offline" . UM-396

Clearing functional coverage data . UM-397

Creating a reactive testbench with endpoint directives UM-398

16 - C Debug (UM-399)

Introduction . UM-400

Supported platforms and gdb versions . UM-401
Running C Debug on Windows platforms UM-401

Setting up C Debug . UM-402
Running C Debug from a DO file . UM-402

Setting breakpoints . UM-403

Stepping in C Debug . UM-405
Known problems with stepping in C Debug UM-405

Finding function entry points with Auto find bp UM-406

Identifying all registered function calls . UM-407
Enabling Auto step mode . UM-407
Example . UM-408
Auto find bp versus Auto step mode . UM-409

Debugging functions during elaboration . UM-410
FLI functions in initialization mode . UM-411
PLI functions in initialization mode . UM-411
VPI functions in initialization mode . UM-413
Completing design load . UM-413

Debugging functions when quitting simulation UM-414

C Debug command reference . UM-415
Sim SE User’s Manual

 UM-15
17 - Signal Spy (UM-417)

Introduction . UM-418
Designed for testbenches . UM-418

init_signal_driver . UM-419

init_signal_spy . UM-422

signal_force . UM-425

signal_release . UM-427

$init_signal_driver . UM-429

$init_signal_spy . UM-432

$signal_force . UM-434

$signal_release . UM-436

18 - Standard Delay Format (SDF) Timing Annotation (UM-439)

Specifying SDF files for simulation . UM-440
Instance specification . UM-440
SDF specification with the GUI . UM-441
Errors and warnings . UM-441

VHDL VITAL SDF . UM-442
SDF to VHDL generic matching . UM-442
Resolving errors . UM-443

Verilog SDF . UM-444
The $sdf_annotate system task . UM-444
SDF to Verilog construct matching . UM-445
Optional edge specifications . UM-448
Optional conditions . UM-449
Rounded timing values . UM-449

SDF for mixed VHDL and Verilog designs . UM-450

Interconnect delays . UM-451

Disabling timing checks . UM-451

Troubleshooting . UM-452
Specifying the wrong instance . UM-452
Mistaking a component or module name for an instance label UM-453
Forgetting to specify the instance . UM-453

19 - Value Change Dump (VCD) Files (UM-455)

Creating a VCD file . UM-456
Flow for four-state VCD file . UM-456
Flow for extended VCD file . UM-456
Case sensitivity . UM-456
Checkpoint/restore and writing VCD files UM-457

Using extended VCD as stimulus . UM-458
ModelSim SE User’s Manual

UM-16 Table of Contents

Model
Simulating with input values from a VCD file UM-458
Replacing instances with output values from a VCD file UM-459

ModelSim VCD commands and VCD tasks . UM-461
Compressing files with VCD tasks . UM-462

A VCD file from source to output . UM-463
VHDL source code . UM-463
VCD simulator commands . UM-463
VCD output . UM-464

Capturing port driver data . UM-467
Supported TSSI states . UM-467
Strength values . UM-468
Port identifier code . UM-468
Example VCD output from vcd dumpports UM-469

20 - Tcl and macros (DO files) (UM-471)

Introduction . UM-472
Tcl features within ModelSim . UM-472
Tcl References . UM-472

Tcl commands . UM-473

Tcl command syntax . UM-474
if command syntax . UM-476
set command syntax . UM-477
Command substitution . UM-477
Command separator . UM-478
Multiple-line commands . UM-478
Evaluation order . UM-478
Tcl relational expression evaluation . UM-478
Variable substitution . UM-479
System commands . UM-479

List processing . UM-480

ModelSim Tcl commands . UM-480

ModelSim Tcl time commands . UM-481
Conversions . UM-481
Relations . UM-481
Arithmetic . UM-482

Tcl examples . UM-483

Macros (DO files) . UM-487
Creating DO files . UM-487
Using Parameters with DO files . UM-487
Deleting a file from a .do script . UM-487
Making macro parameters optional . UM-488
Useful commands for handling breakpoints and errors UM-490
Error action in DO files . UM-490

Macro helper . UM-492

The Tcl Debugger . UM-493
Sim SE User’s Manual

 UM-17
Starting the debugger . UM-493
How it works . UM-493
The Chooser . UM-493
The Debugger . UM-494
Breakpoints . UM-495
Configuration . UM-496

TclPro Debugger . UM-497

21 - ModelSim GUI changes (UM-499)

Main window changes . UM-500
Panes and Windows . UM-500
Multiple document interface (MDI) frame UM-501
Context Sensitivity . UM-501
File menu . UM-502
View menu . UM-505
Simulate menu . UM-506
Tools menu . UM-507
Window menu . UM-508

List window changes . UM-509
File menu . UM-509

Memory window changes . UM-510
File menu . UM-511
Edit menu . UM-512
View menu . UM-513

Signals (Objects) window . UM-514
File menu . UM-514
Edit menu . UM-515

Source window changes . UM-516
File menu . UM-516
View menu . UM-517

Variables (Locals) window . UM-518
Edit menu . UM-518

A - ModelSim variables (UM-519)

Variable settings report . UM-520

Personal preferences . UM-520

Returning to the original ModelSim defaults UM-520

Environment variables . UM-521
Creating environment variables in Windows UM-522
Referencing environment variables within ModelSim UM-523
Removing temp files (VSOUT) . UM-523

Preference variables located in INI files . UM-524
[Library] library path variables . UM-525
[vlog] Verilog compiler control variables UM-525
ModelSim SE User’s Manual

UM-18 Table of Contents

Model
[vcom] VHDL compiler control variables UM-527
[sccom] SystemC compiler control variables UM-528
[vsim] simulator control variables . UM-529
[lmc] Logic Modeling variables . UM-536
[msg_system] message system variables UM-536
Reading variable values from the INI file UM-536
Commonly used INI variables . UM-537

Preference variables located in Tcl files . UM-540

Variable precedence . UM-541

Simulator state variables . UM-542
Referencing simulator state variables . UM-542
Special considerations for the now variable UM-543

B - Error and warning messages (UM-545)

ModelSim message system . UM-546
Message format . UM-546
Getting more information . UM-546
Changing message severity level . UM-546

Suppressing warning messages . UM-548
Suppressing VCOM warning messages . UM-548
Suppressing VLOG warning messages . UM-548
Suppressing VSIM warning messages . UM-548

Exit codes . UM-549

Miscellaneous messages . UM-551
Compilation of DPI export TFs error . UM-551
Empty port name warning . UM-551
Lock message . UM-551
Metavalue detected warning . UM-552
Sensitivity list warning . UM-552
Tcl Initialization error 2 . UM-552
Too few port connections . UM-554
VSIM license lost . UM-555
Failed to find libswift entry . UM-555

sccom error messages . UM-556
Failed to load sc lib error: undefined symbol UM-556
Multiply defined symbols . UM-557

C - Verilog PLI / VPI / DPI (UM-559)

Introduction . UM-560

Registering PLI applications . UM-561

Registering VPI applications . UM-563
Example . UM-563

Registering DPI applications . UM-565

DPI use flow . UM-566
Sim SE User’s Manual

 UM-19
Steps in flow . UM-566

Compiling and linking C applications for PLI/VPI/DPI UM-568

Compiling and linking C++ applications for PLI/VPI/DPI UM-574

Specifying application files to load . UM-580
PLI/VPI file loading . UM-580
DPI file loading . UM-580
Loading shared objects with global symbol visibility UM-581

PLI example . UM-582

VPI example . UM-583

DPI example . UM-584

The PLI callback reason argument . UM-585

The sizetf callback function . UM-587

PLI object handles . UM-588

Third party PLI applications . UM-589

Support for VHDL objects . UM-590

IEEE Std 1364 ACC routines . UM-591

IEEE Std 1364 TF routines . UM-593

SystemVerilog DPI access routines . UM-595

Verilog-XL compatible routines . UM-597

Using 64-bit ModelSim with 32-bit PLI/VPI/DPI Applications UM-598

64-bit support for PLI . UM-598

PLI/VPI tracing . UM-599
The purpose of tracing files . UM-599
Invoking a trace . UM-599
Syntax . UM-599
Arguments . UM-599
Examples . UM-600

Debugging PLI/VPI/DPI application code . UM-601
HP-UX specific warnings . UM-601

D - ModelSim shortcuts (UM-603)

Command shortcuts . UM-603

Command history shortcuts . UM-603

Main and Source window mouse and keyboard shortcuts UM-605

List window keyboard shortcuts . UM-608

Wave window mouse and keyboard shortcuts UM-609

E - System initialization (UM-611)

Files accessed during startup . UM-612

Environment variables accessed during startup UM-613
ModelSim SE User’s Manual

UM-20

Model
Initialization sequence . UM-615

F - Logic Modeling SmartModels (UM-617)

VHDL SmartModel interface . UM-618
Enabling the interface . UM-618
Creating foreign architectures with sm_entity UM-619
Vector ports . UM-621
Command channel . UM-622
SmartModel Windows . UM-623
Memory arrays . UM-624

Verilog SmartModel interface . UM-625
Linking the LMTV interface to the simulator UM-625

G - Logic Modeling hardware models (UM-627)

VHDL hardware model interface . UM-628
Creating foreign architectures with hm_entity UM-629
Vector ports . UM-631
Hardware model commands . UM-632

Index
Sim SE User’s Manual

 UM-21
1 - Introduction

Chapter contents
ModelSim tool structure and verification flow UM-22

ModelSim simulation task overview UM-23

Basic steps for simulation UM-24

ModelSim modes of operation UM-27
Command-line mode UM-27
Batch mode UM-28

ModelSim graphic interface overview UM-29

Standards supported UM-30

Assumptions UM-30

Sections in this document UM-31

What is an "object". UM-34

Text conventions UM-34

Where to find our documentation UM-35

Technical support and updates UM-36

This documentation was written for ModelSim for UNIX and Microsoft Windows. Not all
versions of ModelSim are supported on all platforms. Contact your Mentor Graphics sales
representative for details.
ModelSim SE User’s Manual

UM-22 1 - Introduction

Model
ModelSim tool structure and verification flow

The diagram below illustrates the structure of the ModelSim tool, and the flow of that tool
as it is used to verify a design.

Simulate

Simulation Output
(e.g., vcd)

Post-processing Debug

Debug

.ini or
Compile

vlog/

.mpf file

Libraries
Vendor

Design
files

vsim

Interactive Debugging
activities i.e.

Analyze/

HDL/SystemC

Compile

compiled
database

vcom/
sccom Analyze/

vmap

vopt OPTIONAL:
Optimize

VHDL
 Design
Libraries vlib

local work
library

Map libraries

Verilog
Sim SE User’s Manual

ModelSim simulation task overview UM-23
ModelSim simulation task overview

The following table provides a reference for the tasks required for compiling, loading, and
simulating a design in ModelSim.

Task Example command line
entry

GUI menu pull-down GUI icons

Step 1:
Map libraries

vlib <library_name>
vmap work <library_name>

a. File > New > Project
b. Enter library name
c. Add design files to project

N/A

Step 2:
Compile the
design

vlog file1.v file2.v ... (Verilog)
vcom file1.vhd file2.vhd ...
(VHDL)

sccom <top> (SystemC)
sccom -link <top>

a. Compile > Compile
or
Compile > Compile All

Compile or
Compile All icons:

Step 3:
Load the design
into the simulator

vsim <top> a. Simulate > Start Simulation
b. Click on top design module
c. Click OK

This action loads the design for
simulation

Simulate icon:

Step 4:
Run the simulation

run (CR-252)

step (CR-272)

next (CR-207)

Simulate > Run Run, or
Run continue, or
Run -all icons:

Step 5:
Debug the design

Common debugging
commands:

add wave (CR-52)

bp (CR-75)

describe (CR-147)

drivers (CR-154)

examine (CR-162)

force (CR-180)

log (CR-191)

checkpoint (CR-93)

restore (CR-248)

show (CR-267)

N/A N/A
ModelSim SE User’s Manual

UM-24 1 - Introduction

Model
Basic steps for simulation

This section provides further detail related to each step in the process of simulating your
design using ModelSim.

Step 1 - Collecting Files and Mapping Libraries

Files needed to run ModelSim on your design:

• design files (VHDL, Verilog, and/or SystemC), including stimulus for the design

• libraries, both working and resource

• modelsim.ini (automatically created by the library mapping command

Providing stimulus to the design

You can provide stimulus to your design in several ways:

• Language based testbench

• Tcl-based ModelSim interactive command, force (CR-180)

• VCD files / commands

See "Using extended VCD as stimulus" (UM-458) and "Using extended VCD as stimulus"
(UM-458)

• 3rd party testbench generation tools

What is a library in ModelSim?

A library is a location where data to be used for simulation is stored. Libraries are
ModelSim’s way of managing the creation of data before it is needed for use in simulation.
It also serves as a way to streamline simulation invocation. Instead of compiling all design
data each and every time you simulate, ModelSim uses binary pre-compiled data from these
libraries. So, if you make a changes to a single Verilog module, only that module is
recompiled, rather than all modules in the design.

Working and resource libraries

Design libraries can be used in two ways: 1) as a local working library that contains the
compiled version of your design; 2) as a resource library. The contents of your working
library will change as you update your design and recompile. A resource library is typically
unchanging, and serves as a parts source for your design. Examples of resource libraries
might be: shared information within your group, vendor libraries, packages, or previously
compiled elements of your own working design. You can create your own resource
libraries, or they may be supplied by another design team or a third party (e.g., a silicon
vendor).

For more information on resource libraries and working libraries, see "Working library
versus resource libraries" (UM-58), "Managing library contents" (UM-61), "Working with
design libraries" (UM-60), and "Specifying the resource libraries" (UM-64).

Creating the logical library - vlib

Before you can compile your source files, you must create a library in which to store the
compilation results. You can create the logical library using the GUI, using File > New >
Sim SE User’s Manual

Basic steps for simulation UM-25
Library (see "Creating a library" (UM-60)), or you can use the vlib (CR-356) command. For
example, the command:

vlib work

creates a library named work. By default, compilation results are stored in the work
library.

Mapping the logical work to the physical work directory - vmap

VHDL uses logical library names that can be mapped to ModelSim library directories. If
libraries are not mapped properly, and you invoke your simulation, necessary components
will not be loaded and simulation will fail. Similarly, compilation can also depend on
proper library mapping.

By default, ModelSim can find libraries in your current directory (assuming they have the
right name), but for it to find libraries located elsewhere, you need to map a logical library
name to the pathname of the library.

You can use the GUI ("Library mappings with the GUI" (UM-62), a command ("Library
mappings with the GUI" (UM-62)), or a project ("Getting started with projects" (UM-40) to
assign a logical name to a design library.

The format for command line entry is:

vmap <logical_name> <directory_pathname>

This command sets the mapping between a logical library name and a directory.

Step 2 - Compiling the design with vlog/vcom/sccom

Designs are compiled with one of the three language compilers.

Compiling Verilog - vlog

ModelSim’s compiler for the Verilog modules in your design is vlog (CR-358). Verilog files
may be compiled in any order, as they are not order dependent. See "Compiling Verilog
files" (UM-114) for details.

Verilog portions of the design can be optimized for better simulation performance. See
"Optimizing Verilog designs" (UM-124) for details.

Compiling VHDL - vcom

ModelSim’s compiler for VHDL design units is vcom (CR-311). VHDL files must be
compiled according to the design requirements of the design. Projects may assist you in
determining the compile order: for more information, see"Auto-generating compile order"
(UM-46). See "Compiling VHDL files" (UM-73) for details. on VHDL compilation.

Compiling SystemC - sccom

ModelSim’s compiler for SystemC design units is sccom (CR-254), and is used only if you
have SystemC components in your design. See "Compiling SystemC files" (UM-164) for
details.
ModelSim SE User’s Manual

UM-26 1 - Introduction

Model
Step 3 - Loading the design for simulation

vsim <top>

Your design is ready for simulation after it has been compiled and (optionally) optimized
with vopt (CR-371). For more information on optimization, see Optimizing Verilog
designs (UM-124). You may then invoke vsim (CR-373) with the names of the top-level
modules (many designs contain only one top-level module) or the name you assigned to the
optimized version of the design. For example, if your top-level modules are "testbench" and
"globals", then invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references.

Using SDF

You can incorporate actual delay values to the simulation by applying SDF back-
annotation files to the design. For more information on how SDF is used in the design, see
"Specifying SDF files for simulation" (UM-440).

Step 4 - Simulating the design

Once the design has been successfully loaded, the simulation time is set to zero, and you
must enter a run command to begin simulation. For more information, see Verilog
simulation (UM-111), VHDL simulation (UM-71), and SystemC simulation (UM-159).

The basic simulator commands are:

add wave (CR-52)

force (CR-180)

bp (CR-75)

run (CR-252)

step (CR-272)

next (CR-207)

Step 5- Debugging the design

Numerous tools and windows useful in debugging your design are available from the
ModelSim GUI. For more information, seeWaveform analysis (UM-237), PSL Assertions
(UM-359), andTracing signals with the Dataflow window (UM-299).

In addition, several basic simulation commands are available from the command line to
assist you in debugging your design:

describe (CR-147)

drivers (CR-154)

examine (CR-162)

force (CR-180)

log (CR-191)

checkpoint (CR-93)

restore (CR-248)

show (CR-267)
Sim SE User’s Manual

ModelSim modes of operation UM-27
ModelSim modes of operation

Many users run ModelSim interactively–pushing buttons and/or pulling down menus in a
series of windows in the GUI (graphical user interface). But there are really three modes of
ModelSim operation, the characteristics of which are outlined in the following table.:

The ModelSim User’s Manual focuses primarily on the GUI mode of operation. However,
this section provides an introduction to the Command-line and Batch modes.

Command-line mode

In command-line mode ModelSim executes any startup command specified by the Startup
(UM-534) variable in the modelsim.ini file. If vsim (CR-373) is invoked with the -do
"command_string" option, a DO file (macro) is called. A DO file executed in this manner
will override any startup command in the modelsim.ini file.

During simulation a transcript file is created containing any messages to stdout. A transcript
file created in command-line mode may be used as a DO file if you invoke the transcript
on command (CR-286) after the design loads (see the example below). The transcript on
command writes all of the commands you invoke to the transcript file. For example, the
following series of commands results in a transcript file that can be used for command input
if top is re-simulated (remove the quit -f command from the transcript file if you want to
remain in the simulator).

vsim -c top

library and design loading messages... then execute:

transcript on
force clk 1 50, 0 100 -repeat 100
run 500
run @5000
quit -f

Rename transcript files that you intend to use as DO files. They will be overwritten the next
time you run vsim if you don’t rename them. Also, simulator messages are already
commented out, but any messages generated from your design (and subsequently written
to the transcript file) will cause the simulator to pause. A transcript file that contains only
valid simulator commands will work fine; comment out anything else with a "#".

ModelSim use mode Characteristics How ModelSim is invoked

GUI interactive; has graphical
windows, push-buttons,
menus, and a command line in
the transcript.
Default mode.

via a desktop icon or from the OS command shell
prompt. Example:

OS> vsim

Command-line interactive command line; no
GUI.

with -c argument at the OS command prompt. Example:

OS> vsim -c

Batch non-interactive batch script;
no windows or interactive
command line.

at OS command shell prompt using "here document"
technique or redirection of standard input. Example:

C:\ vsim vfiles.v <infile >outfile
ModelSim SE User’s Manual

UM-28 1 - Introduction

Model
Stand-alone tools pick up project settings in command-line mode if they are invoked in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODELSIM environment variable to the path to the
project file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch mode

Batch mode is an operational mode that provides neither an interactive command line nor
interactive windows. In a UNIX environment, vsim can be invoked in batch mode by
redirecting standard input using the “here-document” technique. In a Windows
environment, vsim is run from a Windows command prompt and standard input and output
are re-directed from and to files.

Here is an example of the "here-document" technique:

vsim top <<!
log -r *
run 100
do test.do
quit -f
!

Here is an example of a batch mode simulation using redirection of std input and output:

vsim counter < yourfile > outfile

where "yourfile" is a script containing various ModelSim commands.
Sim SE User’s Manual

ModelSim graphic interface overview UM-29
ModelSim graphic interface overview

While your operating system interface provides the window-management frame,
ModelSim controls all internal-window features including menus, buttons, and scroll bars.
The resulting simulator interface remains consistent within these operating systems:

• SPARCstation with OpenWindows, OSF/Motif, or CDE

• IBM RISC System/6000 with OSF/Motif

• Hewlett-Packard HP 9000 Series 700 with HP VUE, OSF/Motif, or CDE

• Redhat or SuSE Linux with KDE or GNOME

• Microsoft Windows 98/Me/NT/2000/XP

Because ModelSim’s graphic interface is based on Tcl/TK, you also have the tools to build
your own simulation environment. Preference variables and configuration commands (see
"Preference variables located in INI files" (UM-524) for details) give you control over the
use and placement of windows, menus, menu options, and buttons. See "Tcl and macros
(DO files)" (UM-471) for more information on Tcl.

For an in-depth look at ModelSim’s graphic interface, see the ModelSim GUI Reference.
ModelSim SE User’s Manual

UM-30 1 - Introduction

Model
Standards supported

ModelSim VHDL implements the VHDL language as defined by IEEE Standards
1076-1987, 1076-1993, and 1076-2002. ModelSim also supports the 1164-1993 Standard
Multivalue Logic System for VHDL Interoperability, and the 1076.2-1996 Standard VHDL
Mathematical Packages standards. Any design developed with ModelSim will be
compatible with any other VHDL system that is compliant with the 1076 specs.

ModelSim Verilog implements the Verilog language as defined by the IEEE Std 1364-1995
and 1364-2001. ModelSim Verilog also supports a partial implementation of
SystemVerilog 3.1, Accellera’s Extensions to Verilog® (see /<install_dir>/modeltech/
docs/technotes/svlog.note for implementation details). The Open Verilog International
Verilog LRM version 2.0 is also applicable to a large extent. Both PLI (Programming
Language Interface) and VCD (Value Change Dump) are supported for ModelSim PE and
SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL’95 – IEEE
1076.4-1995, and VITAL 2000 – IEEE 1076.4-2000.

ModelSim implements the SystemC language based on the Open SystemC Initiative
(OSCI) SystemC 2.0.1 reference simulator.

ModelSim implements the simple subset of Accellera’s Property Specification Language
(PSL) version 1.1.

Assumptions

We assume that you are familiar with the use of your operating system and its graphical
interface.

We also assume that you have a working knowledge of VHDL, Verilog, and/or SystemC.
Although ModelSim is an excellent tool to use while learning HDL concepts and practices,
this document is not written to support that goal.

Finally, we assume that you have worked the appropriate lessons in the ModelSim Tutorial
and are familiar with the basic functionality of ModelSim. The ModelSim Tutorial is
available from the ModelSim Help menu. The ModelSim Tutorial is also available from the
Support page of our web site: www.model.com.
Sim SE User’s Manual

http://www.model.com/products/release.asp

Sections in this document UM-31
Sections in this document

In addition to this introduction, you will find the following major sections in this document:

2 - Projects (UM-37)

This chapter discusses ModelSim "projects", a container for design files and their
associated simulation properties.

3 - Design libraries (UM-57)

To simulate an HDL design using ModelSim, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL simulation (UM-71)

This chapter is an overview of compilation and simulation for VHDL within the
ModelSim environment.

5 - Verilog simulation (UM-111)

This chapter is an overview of compilation and simulation for Verilog within the
ModelSim environment.

6 - SystemC simulation (UM-159)

This chapter is an overview of preparation, compilation, and simulation for SystemC
within the ModelSim environment.

7 - Mixed-language simulation (UM-187)

This chapter outlines data mapping and the criteria established to instantiate design
units between VHDL, Verilog, and SystemC.

8 - WLF files (datasets) and virtuals (UM-225)

This chapter describes datasets and virtuals - both methods for viewing and organizing
simulation data in ModelSim.

9 - Waveform analysis (UM-237)

This chapter describes how to perform waveform analysis with the ModelSim Wave
and List windows.

11 - Tracing signals with the Dataflow window (UM-299)

This chapter describes how to trace signals and assess causality using the ModelSim
Dataflow window.

12 - Profiling performance and memory use (UM-317)

This chapter describes how the ModelSim Performance Analyzer is used to easily
identify areas in your simulation where performance can be improved.

13 - Measuring code coverage (UM-333)

This chapter describes the Code Coverage feature. Code Coverage gives you graphical
and report file feedback on how the source code is being executed.

14 - PSL Assertions (UM-359)

This chapter describes how to simulate and debug with PSL assertions.
ModelSim SE User’s Manual

UM-32 1 - Introduction

Model
15 - Functional coverage with PSL and ModelSim (UM-383)

This chapter describes how to measure functional coverage with PSL cover directives.

16 - C Debug (UM-399)

This chapter describes C Debug, a graphic interface to the gdb debugger that can be
used to debug FLI/PLI/VPI/SystemC C/C++ source code.

17 - Signal Spy (UM-417)

This chapter describes Signal Spy, a set of VHDL procedures and Verilog system tasks
that let you monitor, drive, force, or release a design object from anywhere in the
hierarchy of a VHDL or mixed design.

18 - Standard Delay Format (SDF) Timing Annotation (UM-439)

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

19 - Value Change Dump (VCD) Files (UM-455)

This chapter explains Model Technology’s Verilog VCD implementation for
ModelSim. The VCD usage is extended to include VHDL designs.

20 - Tcl and macros (DO files) (UM-471)

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim.

A - ModelSim GUI changes (UM-499)

This appendix describes what has changed in ModelSim from version 5.8 to version
6.0. This includes a description of the new Multiple Documentation Interface (MDI)
frame, increased menu context sensitivity, and menu selection changes.

B - ModelSim variables (UM-519)

This appendix describes environment, system, and preference variables used in
ModelSim.

C - Error and warning messages (UM-545)

This appendix describes ModelSim error and warning messages.

D - Verilog PLI / VPI / DPI (UM-559)

This appendix describes the ModelSim implementation of the Verilog PLI and VPI.

E - ModelSim shortcuts (UM-603)

This appendix describes ModelSim keyboard and mouse shortcuts.

F - System initialization (UM-611)

This appendix describes what happens during ModelSim startup.

G - Logic Modeling SmartModels (UM-617)

This appendix describes the use of the SmartModel Library and SmartModel Windows
with ModelSim.
Sim SE User’s Manual

Sections in this document UM-33
H - Logic Modeling hardware models (UM-627)

This appendix describes the use of the Logic Modeling Hardware Modeler with
ModelSim.
ModelSim SE User’s Manual

UM-34 1 - Introduction

Model
What is an "object"

Because ModelSim works with VHDL, Verilog, and System C, an “object” refers to any
valid design element in those languages. The word "object" is used whenever a specific
language reference is not needed. Depending on the context, “object” can refer to any of
the following:

Text conventions

Text conventions used in this manual include:

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, alias, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, register, or variable

SystemC module, channel, port, variable, or aggregate

italic text provides emphasis and sets off filenames, pathnames, and
design unit names

bold text indicates commands, command options, menu choices,
package and library logical names, as well as variables,
dialog box selections, and language keywords

monospace type monospace type is used for program and command examples

The right angle (>) is used to connect menu choices when traversing menus as
in: File > Quit

path separators examples will show either UNIX or Windows path
separators - use separators appropriate for your operating
system when trying the examples

UPPER CASE denotes file types used by ModelSim (e.g., DO, WLF, INI,
MPF, PDF, etc.)
Sim SE User’s Manual

Where to find our documentation UM-35
Where to find our documentation

ModelSim documentation is available from our website at www.model.com/support or in
the following formats and locations:

Download a free PDF reader with Search

Model Technology’s PDF documentation requires an Adobe Acrobat Reader for viewing.
The Reader may be installed from the ModelSim CD. It is also available without cost from
Adobe at www.adobe.com. Be sure to download the Acrobat Reader with Search to take
advantage of the index file supplied with our documentation; the index makes searching for
keywords much faster.

Document Format How to get it

ModelSim Installation &
Licensing Guide

paper shipped with ModelSim

PDF select Help > Documentation; also available from the Support
page of our web site: www.model.com

ModelSim Quick Guide
(command and feature
quick-reference)

paper shipped with ModelSim

PDF select Help > Documentation, also available from the Support
page of our web site: www.model.com

ModelSim Tutorial PDF, HTML select Help > Documentation; also available from the Support
page of our web site: www.model.com

ModelSim User’s Manual PDF, HTML select Help > Documentation

ModelSim Command
Reference

PDF, HTML select Help > Documentation

ModelSim GUI Reference PDF, HTML select Help > Documentation

Foreign Language
Interface Reference

PDF, HTML select Help > Documentation

Std_DevelopersKit User’s
Manual

PDF www.model.com/support/documentation/BOOK/sdk_um.pdf

The Standard Developer’s Kit is for use with Mentor Graphics
QuickHDL.

Command Help ASCII type help [command name] at the prompt in the Transcript pane

Error message help ASCII type verror <msgNum> at the Transcript or shell prompt

Tcl Man Pages (Tcl
manual)

HTML select Help > Tcl Man Pages, or find contents.htm in
\modeltech\docs\tcl_help_html

Technotes HTML select Technotes dropdown on www.model.com/support
ModelSim SE User’s Manual

http://www.model.com/support
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation/BOOK/sdk_um.pdf
http://www.model.com/support
http://www.adobe.com

UM-36 1 - Introduction

Model
Technical support and updates

Support

Model Technology online and email technical support options, maintenance renewal, and
links to international support contacts:
www.model.com/support/default.asp

Mentor Graphics support:
www.mentor.com/supportnet

Updates

Access to the most current version of ModelSim:
www.model.com/downloads/default.asp

Latest version email

Place your name on our list for email notification of news and updates:
www.model.com/products/informant.asp
Sim SE User’s Manual

http://www.model.com/support/default.asp
http://www.mentor.com/supportnet/
http://www.model.com/downloads/default.asp
http://www.model.com/products/informant.asp

 UM-37
2 - Projects

Chapter contents
Introduction UM-38

What are projects?. UM-38
What are the benefits of projects?. UM-38
Project conversion between versions UM-39

Getting started with projects UM-40
Step 1 — Creating a new project UM-40
Step 2 — Adding items to the project. UM-41
Step 3 — Compiling the files UM-41
Step 4 — Simulating a design. UM-41
Other basic project operations. UM-44

The Project tab UM-45
Sorting the list UM-45
Changing compile order UM-46

Changing compile order UM-46
Auto-generating compile order UM-46
Grouping files UM-47

Creating a Simulation Configuration UM-48
Optimization Configurations UM-49

Organizing projects with folders UM-50

Specifying file properties and project settings UM-52
File compilation properties UM-52
Project settings UM-54

Accessing projects from the command line UM-55

This chapter discusses ModelSim projects. Projects simplify the process of compiling and
simulating a design and are a great tool for getting started with ModelSim.
ModelSim SE User’s Manual

UM-38 2 - Projects

Model
Introduction

What are projects?

Projects are collection entities for designs under specification or test. At a minimum,
projects have a root directory, a work library, and "metadata" which are stored in a .mpf file
located in a project's root directory. The metadata include compiler switch settings, compile
order, and file mappings. Projects may also include:

• Source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

• Simulation Configurations (see "Creating a Simulation Configuration" (UM-48))

• Folders (see "Organizing projects with folders" (UM-50))

What are the benefits of projects?

Projects offer benefits to both new and advanced users. Projects

• simplify interaction with ModelSim; you don’t need to understand the intricacies of
compiler switches and library mappings

• eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project. Compile order is maintained for HDL-only designs.

• remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to source files

• allow users to share libraries without copying files to a local directory; you can establish
references to source files that are stored remotely or locally

• allow you to change individual parameters across multiple files; in previous versions you
could only set parameters one file at a time

• enable "what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

• reload the initial settings from the project .mpf file every time the project is opened

Important: Project metadata are updated and stored only for actions taken within the
project itself. For example, if you have a file in a project, and you compile that file from
the command line rather than using the project menu commands, the project will not
update to reflect any new compile settings.
Sim SE User’s Manual

Introduction UM-39
Project conversion between versions

Projects are generally not backwards compatible for either number or letter releases. When
you open a project created in an earlier version (e.g, you are using 5.8 and you open a
project created in 5.7), you will see a message warning that the project will be converted to
the newer version. You have the option of continuing with the conversion or cancelling the
operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named <project name>.mpf.bak and is created in the
same directory in which the original project is located.
ModelSim SE User’s Manual

UM-40 2 - Projects

Model
Getting started with projects

This section describes the four basic steps to working with a project.

Step 1 — Creating a new project (UM-40)

This creates a .mpf file and a working library.

Step 2 — Adding items to the project (UM-41)

Projects can reference or include source files, folders for organization, simulations, and
any other files you want to associate with the project. You can copy files into the project
directory or simply create mappings to files in other locations.

Step 3 — Compiling the files (UM-43)

This checks syntax and semantics and creates the pseudo machine code ModelSim uses
for simulation.

Step 4 — Simulating a design (UM-44)

This specifies the design unit you want to simulate and opens a structure tab in the
Workspace pane.

Step 1 — Creating a new project

Select File > New > Project to create a new project. This opens the Create Project dialog
where you can specify a project name, location, and default library name. You can
generally leave the Default Library Name set to "work." The name you specify will be
used to create a working library subdirectory within the Project Location.

See "Create Project dialog" (GR-37) for more details on this dialog.
Sim SE User’s Manual

Getting started with projects UM-41
After selecting OK, you will see a blank Project tab in the Workspace pane of the Main
window and the Add Items to the Project dialog.

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding items to the project

The Add Items to the Project dialog includes these options:

• Create New File
Create a new VHDL, Verilog, SystemC, Tcl, or text file using the Source editor. See
below for details.

• Add Existing File
Add an existing file. See below for details.

• Create Simulation
Create a Simulation Configuration that specifies source files and simulator options. See
"Creating a Simulation Configuration" (UM-48) for details.

• Create New Folder
Create an organization folder. See "Organizing projects with folders" (UM-50) for details.

workspace
ModelSim SE User’s Manual

UM-42 2 - Projects

Model
Create New File

The Create New File command lets you create a new VHDL, Verilog, SystemC, Tcl, or
text file using the Source editor. You can also access this command by selecting File > Add
to Project > New File or right-clicking (2nd button in Windows; 3rd button in UNIX) in
the Project tab and selecting Add to Project > New File.

Specify a name, file type, and folder location for the new file. See "Create Project File
dialog" (GR-43) for additional details on this dialog.

When you select OK, the file is listed in the Project tab.

Add Existing File

You can also access this command by selecting File > Add to Project > Existing File or
by right-clicking (2nd button in Windows; 3rd button in UNIX) in the Project tab and
selecting Add to Project > Existing File.

See "Add file to Project dialog" (GR-44) for details on this dialog.

When you select OK, the file(s) is added to the Project tab.
Sim SE User’s Manual

Getting started with projects UM-43
Step 3 — Compiling the files

The question marks in the Status column in the Project tab denote either the files haven’t
been compiled into the project or the source has changed since the last compile. To compile
the files, select Compile > Compile All or right click in the Project tab and select Compile
> Compile All.

Once compilation is finished, click the Library tab, expand library work by clicking the "+",
and you will see the compiled design units.
ModelSim SE User’s Manual

UM-44 2 - Projects

Model
Step 4 — Simulating a design

To simulate one of the designs, either double-click the name or right-click the name and
select Simulate. A new tab named sim appears that shows the structure of the active
simulation.

At this point you are ready to run the simulation and analyze your results. You often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSim Tutorial for examples.

Other basic project operations

Open an existing project

If you previously exited ModelSim with a project open, ModelSim automatically will open
that same project upon startup. You can open a different project by selecting File > Open
and choosing Project Files from the Files of type drop-down.

Close a project

Select File > Close > Project or right-click in the Project tab and select Close Project. This
closes the Project tab but leaves the Library tab open in the workspace. Note that you
cannot close a project while a simulation is in progress.

Delete a project

Select File > Delete > Project. You cannot delete a project while it is open.
Sim SE User’s Manual

The Project tab UM-45
The Project tab

The Project tab contains information about the objects in your project. By default the tab is
divided into five columns.

Name – The name of a file or object.

Status – Identifies whether a source file has been successfully compiled. Applies only to
VHDL or Verilog files. A question mark means the file hasn’t been compiled or the source
file has changed since the last successful compile; an X means the compile failed; a check
mark means the compile succeeded; a checkmark with a yellow triangle behind it means
the file compiled but there were warnings generated.

Type – The file type as determined by registered file types on Windows or the type you
specify when you add the file to the project.

Order – The order in which the file will be compiled when you execute a Compile All
command.

Modified – The date and time of the last modification to the file.

You can hide or show columns by right-clicking on a column title and selecting or
deselecting entries.

Sorting the list

You can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down
arrow) or ascending (up arrow).
ModelSim SE User’s Manual

UM-46 2 - Projects

Model
Changing compile order

The Compile Order dialog box is functional for HDL-only designs. When you compile all
files in a project, ModelSim by default compiles the files in the order in which they were
added to the project. You have two alternatives for changing the default compile order: 1)
select and compile each file individually; 2) specify a custom compile order.

To specify a custom compile order, follow these steps:

1 Select Compile > Compile Order or select it from the context menu in the Project tab.

2 Drag the files into the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-generating compile order

Auto Generate is supported for HDL-only designs. The Auto Generate button in the
Compile Order dialog (see above) "determines" the correct compile order by making
multiple passes over the files. It starts compiling from the top; if a file fails to compile due
to dependencies, it moves that file to the bottom and then recompiles it after compiling the
rest of the files. It continues in this manner until all files compile successfully or until a
file(s) can’t be compiled for reasons other than dependency.

Files can be displayed in the Project tab in alphabetical or compile order (by clicking the
column headings). Keep in mind that the order you see in the Project tab is not necessarily
the order in which the files will be compiled.
Sim SE User’s Manual

Changing compile order UM-47
Grouping files

You can group two or more files in the Compile Order dialog so they are sent to the
compiler at the same time. For example, you might have one file with a bunch of Verilog
define statements and a second file that is a Verilog module. You would want to compile
these two files together.

To group files, follow these steps:

1 Select the files you want to group.

2 Click the Group button.

To ungroup files, select the group and click the Ungroup button.
ModelSim SE User’s Manual

UM-48 2 - Projects

Model
Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its simulation options. For
example, say you routinely load a particular design and you have to specify the simulator
resolution, generics, and SDF timing files. Ordinarily you would have to specify those
options each time you load the design. With a Simulation Configuration, you would specify
the design and those options and then save the configuration with a name (e.g., top_config).
The name is then listed in the Project tab and you can double-click it to load the design
along with its options.

To create a Simulation Configuration, follow these steps:

1 Select File > Add to Project > Simulation Configuration or select it from the context
menu in the Project tab.

2 Specify a name in the Simulation Configuration Name field.

3 Specify the folder in which you want to place the configuration (see "Organizing projects
with folders" (UM-50)).
Sim SE User’s Manual

Creating a Simulation Configuration UM-49
4 Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select
them.

5 Use the other tabs in the dialog to specify any required simulation options. See "Start
Simulation dialog" (GR-76) for details on the available options.

Click OK and the simulation configuration is added to the Project tab.

Double-click the Simulation Configuration to load the design.

Optimization Configurations

Similar to Simulation Configurations, Optimization Configurations are named objects that
represent an optimized simulation. The process for creating and using them is similar to that
for Simulation Configurations (see above). You create them by selecting File > Add to
Project > Optimization Configuration and specifying various options in a dialog. See
"Optimization Configuration dialog" (GR-45) for more details on the dialog.
ModelSim SE User’s Manual

UM-50 2 - Projects

Model
Organizing projects with folders

The more files you add to a project, the harder it can be to locate the item you need. You
can add "folders" to the project to organize your files. These folders are akin to directories
in that you can have multiple levels of folders and sub-folders. However, no actual
directories are created via the file system–the folders are present only within the project
file.

Adding a folder

To add a folder to your project, select File > Add to Project > Folder or right-click in the
Project tab and select Add to Project > Folder.

Specify the Folder Name, the location for the folder, and click OK. The folder will be
displayed in the Project tab.
Sim SE User’s Manual

Organizing projects with folders UM-51
You use the folders when you add new objects to the project. For example, when you add
a file, you can select which folder to place it in.

If you want to move a file into a folder later on, you can do so using the Properties dialog
for the file (right-click on the file and select Properties from the context menu).

On Windows platforms, you can also just drag-and-drop a file into a folder.
ModelSim SE User’s Manual

UM-52 2 - Projects

Model
Specifying file properties and project settings

You can set two types of properties in a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File compilation properties

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how a design is compiled and subsequently simulated. You can customize the
settings on individual files or a group of files.

To customize specific files, select the file(s) in the Project tab, right click on the file names,
and select Properties. The resulting Project Compiler Settings dialog varies depending on
the number and type of files you have selected. If you select a single VHDL or Verilog file,
you will see the General tab, Coverage tab, and the VHDL or Verilog tab, respectively. If
you select a SystemC file, you will see only the General tab. On the General tab, you will
see file properties such as Type, Location, and Size. If you select multiple files, the file
properties on the General tab are not listed. Finally, if you select both a VHDL file and a
Verilog file, you will see all tabs but no file information on the General tab.

See "Project Compiler Settings" (GR-50) for details on this dialog.

Important: Any changes you make to the compile properties outside of the project,
whether from the command line, the GUI, or the modelsim.ini file, will not affect the
properties of files already in the project.
Sim SE User’s Manual

Specifying file properties and project settings UM-53
When setting options on a group of files, keep in mind the following:

• If two or more files have different settings for the same option, the checkbox in the dialog
will be "grayed out." If you change the option, you cannot change it back to a "multi- state
setting" without cancelling out of the dialog. Once you click OK, ModelSim will set the
option the same for all selected files.

• If you select a combination of VHDL and Verilog files, the options you set on the VHDL
and Verilog tabs apply only to those file types.

PSL assertions are supported in projects. You can click on the PSL File button in the
VHDL and Verilog tabs of the Project Compiler Settings dialog to add PSL files. See
"Project Compiler Settings" (GR-50) and Chapter 14 - PSL Assertions for additional
information.
ModelSim SE User’s Manual

UM-54 2 - Projects

Model
Project settings

To modify project settings, right-click anywhere within the Project tab and select Project
Settings.

See "Project Settings dialog" (GR-57) for details on this dialog.
Sim SE User’s Manual

Accessing projects from the command line UM-55
Accessing projects from the command line

Generally, projects are used from within the ModelSim GUI. However, standalone tools
will use the project file if they are invoked in the project's root directory. If you want to
invoke outside the project directory, set the MODELSIM environment variable with the
path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

You can also use the project command (CR-233) from the command line to perform
common operations on projects.
ModelSim SE User’s Manual

UM-56 2 - Projects

Model
Sim SE User’s Manual

 UM-57
3 - Design libraries

Chapter contents
Design library overview UM-58

Design unit information UM-58
Working library versus resource libraries UM-58
Archives UM-59

Working with design libraries UM-60
Creating a library UM-60
Managing library contents UM-61
Assigning a logical name to a design library UM-62
Moving a library UM-63
Setting up libraries for group use UM-63

Specifying the resource libraries UM-64
Verilog resource libraries UM-64
VHDL resource libraries UM-64
Predefined libraries UM-64
Alternate IEEE libraries supplied UM-65
Rebuilding supplied libraries UM-65
Regenerating your design libraries UM-66
Maintaining 32-bit and 64-bit versions in the same library . . . UM-66

Referencing source files with location maps UM-67

Importing FPGA libraries UM-69

Protecting source code using -nodebug UM-70

VHDL designs are associated with libraries, which are objects that contain compiled design
units. Verilog designs simulated within ModelSim are compiled into libraries as well.
ModelSim SE User’s Manual

UM-58 3 - Design libraries

Model
Design library overview

A design library is a directory or archive that serves as a repository for compiled design
units. The design units contained in a design library consist of VHDL entities, packages,
architectures, and configurations; Verilog modules and UDPs (user-defined primitives);
and SystemC modules. The design units are classified as follows:

• Primary design units
Consist of entities, package declarations, configuration declarations, modules, UDPs,
and SystemC modules. Primary design units within a given library must have unique
names.

• Secondary design units
Consist of architecture bodies, package bodies, and optimized Verilog modules.
Secondary design units are associated with a primary design unit. Architectures by the
same name can exist if they are associated with different entities or modules.

Design unit information

The information stored for each design unit in a design library is:

• retargetable, executable code

• debugging information

• dependency information

Working library versus resource libraries

Design libraries can be used in two ways: 1) as a local working library that contains the
compiled version of your design; 2) as a resource library. The contents of your working
library will change as you update your design and recompile. A resource library is typically
static and serves as a parts source for your design. You can create your own resource
libraries, or they may be supplied by another design team or a third party (e.g., a silicon
vendor).

Only one library can be the working library. In contrast any number of libraries can be
resource libraries during a compilation. You specify which resource libraries will be used
when the design is compiled, and there are rules to specify in which order they are searched
(see "Specifying the resource libraries" (UM-64)).

A common example of using both a working library and a resource library is one where
your gate-level design and testbench are compiled into the working library, and the design
references gate-level models in a separate resource library.

The library named "work"

The library named "work" has special attributes within ModelSim; it is predefined in the
compiler and need not be declared explicitly (i.e. library work). It is also the library name
used by the compiler as the default destination of compiled design units (i.e., it doesn’t need
to be mapped). In other words the work library is the default working library.
Sim SE User’s Manual

Design library overview UM-59
Archives

By default, design libraries are stored in a directory structure with a sub-directory for each
design unit in the library. Alternatively, you can configure a design library to use archives.
In this case each design unit is stored in its own archive file. To create an archive, use the
-archive argument to the vlib command (CR-356).

Generally you would do this only in the rare case that you hit the reference count limit on
I-nodes due to the ".." entries in the lower-level directories (the maximum number of sub-
directories on UNIX and Linux is 65533). An example of an error message that is produced
when this limit is hit is:

mkdir: cannot create directory `65534': Too many links

Archives may also have limited value to customers seeking disk space savings.

Note that GMAKE won’t work with these archives on the IBM platform.
ModelSim SE User’s Manual

UM-60 3 - Design libraries

Model
Working with design libraries

The implementation of a design library is not defined within standard VHDL or Verilog.
Within ModelSim, design libraries are implemented as directories and can have any legal
name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects" (UM-40)), ModelSim
automatically creates a working design library. If you don’t create a project, you need to
create a working design library before you run the compiler. This can be done from either
the command line or from the ModelSim graphic interface.

From the ModelSim prompt or a UNIX/DOS prompt, use this vlib command (CR-356):

vlib <directory_pathname>

To create a new library with the ModelSim graphic interface, select File > New > Library.

The options in this dialog are described under "Create a New Library dialog" (GR-38).

When you click OK, ModelSim creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it as a ModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. See
"[Library] library path variables" (UM-525) for more information.

Note: Remember that a design library is a special kind of directory; the only way to
create a library is to use the ModelSim GUI or the vlib command (CR-356). Do not try to
create libraries using UNIX, DOS, or Windows commands.
Sim SE User’s Manual

Working with design libraries UM-61
Managing library contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library tab in the Workspace pane provides access to design units (configurations,
modules, packages, entities, architectures, and SystemC modules) in a library. Various
information about the design units is displayed in columns to the right of the design unit
name.

The Library tab has a context menu with various commands that you access by clicking
your right mouse button (Windows—2nd button, UNIX—3rd button) in the Library tab.
ModelSim SE User’s Manual

UM-62 3 - Design libraries

Model
Assigning a logical name to a design library

VHDL uses logical library names that can be mapped to ModelSim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name
to the pathname of the library.

You can use the GUI, a command, or a project to assign a logical name to a design library.

Library mappings with the GUI

To associate a logical name with a library, select the library in the workspace, right-click
and select Edit from the context menu. This brings up a dialog box that allows you to edit
the mapping.

The dialog box includes these options:

• Library Mapping Name
The logical name of the library.

• Library Pathname
The pathname to the library.

Library mapping from the command line

You can issue a command to set the mapping between a logical library name and a
directory; its form is:

vmap <logical_name> <directory_pathname>

You may invoke this command from either a UNIX/DOS prompt or from the command line
within ModelSim.

The vmap (CR-370) command adds the mapping to the library section of the modelsim.ini
file. You can also modify modelsim.ini manually by adding a mapping line. To do this, use
a text editor and add a line under the [Library] section heading using the syntax:

<logical_name> = <directory_pathname>
Sim SE User’s Manual

Working with design libraries UM-63
More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

This would allow you to use either the logical name work or my_asic in a library or use
clause to refer to the same design library.

Unix symbolic links

You can also create a UNIX symbolic link to the library using the host platform command:

ln -s <directory_pathname> <logical_name>

The vmap command (CR-370) can also be used to display the mapping of a logical library
name to a directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Library search rules

The system searches for the mapping of a logical name in the following order:

• First the system looks for a modelsim.ini file.

• If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify a logical name that does not resolve to
an existing directory.

Moving a library

Individual design units in a design library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving a directory
or an archive.

Setting up libraries for group use

By adding an “others” clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the “others” clause. For
example:

[library]
asic_lib = /cae/asic_lib
work = my_work
others = /usr/modeltech/modelsim.ini

Only one "others" clause can be entered in the library section.
ModelSim SE User’s Manual

UM-64 3 - Design libraries

Model
Specifying the resource libraries

Verilog resource libraries

ModelSim supports separate compilation of distinct portions of a Verilog design. The vlog
(CR-358) compiler is used to compile one or more source files into a specified library. The
library thus contains pre-compiled modules and UDPs that are referenced by the simulator
as it loads the design.

VHDL resource libraries

Within a VHDL source file, you use the VHDL library clause to specify logical names of
one or more resource libraries to be referenced in the subsequent design unit. The scope of
a library clause includes the text region that starts immediately after the library clause and
extends to the end of the declarative region of the associated design unit. It does not extend
to the next design unit in the file.

Note that the library clause is not used to specify the working library into which the design
unit is placed after compilation. The vcom command (CR-311) adds compiled design units
to the current working library. By default, this is the library named work. To change the
current working library, you can use vcom -work and specify the name of the desired target
library.

Predefined libraries

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standard and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Standard VHDL Language Reference Manual, Std 1076. See also, "Using the
TextIO package" (UM-88).

A VHDL use clause can be specified to select particular declarations in a library or package
that are to be visible within a design unit during compilation. A use clause references the
compiled version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarations in a library or package can be referenced, add the suffix .all
to the library/package name. For example, the use clause above specifies that all
declarations in the package standard, in the design library named std, are to be visible to
the VHDL design unit immediately following the use clause. Other libraries or packages
are not visible unless they are explicitly specified using a library or use clause.

Another predefined library is work, the library where a design unit is stored after it is
compiled as described earlier. There is no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.

Important: Resource libraries are specified differently for Verilog and VHDL. For
Verilog you use either the -L or -Lf argument to vlog (CR-358). See "Library usage" (UM-

117) for more information.
Sim SE User’s Manual

Specifying the resource libraries UM-65
Alternate IEEE libraries supplied

The installation directory may contain two or more versions of the IEEE library:

• ieeepure
Contains only IEEE approved packages (accelerated for ModelSim).

• ieee
Contains precompiled Synopsys and IEEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, and vital_timing.

You can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.

Rebuilding supplied libraries

Resource libraries are supplied precompiled in the modeltech installation directory. If you
need to rebuild these libraries, the sources are provided in the vhdl_src directory; a macro
file is also provided for Windows platforms (rebldlibs.do). To rebuild the libraries, invoke
the DO file from within ModelSim with this command:

do rbldlibs.do

Make sure your current directory is the modeltech install directory before you run this file.

Shell scripts are provided for UNIX (rebuild_libs.csh and rebuild_libs.sh). To rebuild the
libraries, execute one of the rebuild_libs scripts while in the modeltech directory.

Note: Because accelerated subprograms require attributes that are available only under
the 1993 standard, many of the libraries are built using vcom (CR-311) with the -93
option.
ModelSim SE User’s Manual

UM-66 3 - Design libraries

Model
Regenerating your design libraries

Depending on your current ModelSim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to see if your
libraries require an update. You can regenerate your design libraries using the Refresh
command from the Library tab context menu (see "Managing library contents" (UM-61)), or
by using the -refresh argument to vcom (CR-311) and vlog (CR-358).

From the command line, you would use vcom with the -refresh option to update VHDL
design units in a library, and vlog with the -refresh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update a different library.
For example, if you have a library named mylib that contains both VHDL and Verilog
design units:

vcom -work mylib -refresh
vlog -work mylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of ModelSim (4.6 and later only). In general, this works for
moving forwards or backwards on a release. Moving backwards on a release may not work
if the models used compiler switches or directives that do not exist in the older release.

Maintaining 32-bit and 64-bit versions in the same library

It is possible with ModelSim to maintain 32-bit and 64-bit versions of a design in the same
library, as long as they haven’t been optimized by the vopt command (CR-371).

To do this, you must compile the design with the 32-bit version and then "refresh" the
design with the 64-bit version. For example:

Using the 32-bit version of ModelSim:

vlog file1.v file2.v -forcecode -work asic_lib

Next, using the 64-bit version of ModelSim:

vlog -work asic_lib -refresh

This allows you to use either version without having to do a refresh.

Do not compile the design with one version, and then recompile it with the other. If you do
this, ModelSim will remove the first module, because it could be "stale."

Note: You don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you
cannot use the -refresh option to update libraries that were built before the 4.6 release.
Sim SE User’s Manual

Referencing source files with location maps UM-67
Referencing source files with location maps

Pathnames to source files are recorded in libraries by storing the working directory from
which the compile is invoked and the pathname to the file as specified in the invocation of
the compiler. The pathname may be either a complete pathname or a relative pathname.

ModelSim tools that reference source files from the library locate a source file as follows:

• If the pathname stored in the library is complete, then this is the path used to reference
the file.

• If the pathname is relative, then the tool looks for the file relative to the current working
directory. If this file does not exist, then the path relative to the working directory stored
in the library is used.

This method of referencing source files generally works fine if the libraries are created and
used on a single system. However, when multiple systems access a library across a
network, the physical pathnames are not always the same and the source file reference rules
do not always work.

Using location mapping

Location maps are used to replace prefixes of physical pathnames in the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

ModelSim tools open the location map file on invocation if the MGC_LOCATION_MAP
(UM-521) environment variable is set. If MGC_LOCATION_MAP is not set, ModelSim
will look for a file named "mgc_location_map" in the following locations, in order:

• the current directory

• your home directory

• the directory containing the ModelSim binaries

• the ModelSim installation directory

Use these two steps to map your files:

1 Set the environment variable MGC_LOCATION_MAP to the path to your location map
file.

2 Specify the mappings from physical pathnames to logical pathnames:

$SRC
/home/vhdl/src
/usr/vhdl/src

$IEEE
/usr/modeltech/ieee
ModelSim SE User’s Manual

UM-68 3 - Design libraries

Model
Pathname syntax

The logical pathnames must begin with $ and the physical pathnames must begin with /.
The logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have
different pathnames on different systems).

How location mapping works

When a pathname is stored, an attempt is made to map the physical pathname to a path
relative to a logical pathname. This is done by searching the location map file for the first
physical pathname that is a prefix to the pathname in question. The logical pathname is then
substituted for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/
test.vhd". If a mapping can be made to a logical pathname, then this is the pathname that is
saved. The path to a source file entry for a design unit in a library is a good example of a
typical mapping.

For mapping from a logical pathname back to the physical pathname, ModelSim expects
an environment variable to be set for each logical pathname (with the same name).
ModelSim reads the location map file when a tool is invoked. If the environment variables
corresponding to logical pathnames have not been set in your shell, ModelSim sets the
variables to the first physical pathname following the logical pathname in the location map.
For example, if you don't set the SRC environment variable, ModelSim will automatically
set it to "/home/vhdl/src".

Mapping with Tcl variables

Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. See "Preference variables located in Tcl files" (UM-540) for more information on Tcl
preference variables.
Sim SE User’s Manual

Importing FPGA libraries UM-69
Importing FPGA libraries

ModelSim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

To import an FPGA library, select File > Import > Library.

Follow the instructions in the wizard to complete the import.

Important: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with ModelSim.
ModelSim SE User’s Manual

UM-70 3 - Design libraries

Model
Protecting source code using -nodebug

The -nodebug argument for both vcom (CR-311) and vlog (CR-358) hides internal model
data. This allows a model supplier to provide pre-compiled libraries without providing
source code and without revealing internal model variables and structure.

When you compile with -nodebug, all source text, identifiers, and line number information
are stripped from the resulting compiled object, so ModelSim cannot locate or display any
information of the model except for the external pins. Specifically, this means that:

• a Source window will not display the design units’ source code

• a structure pane will not display the internal structure

• the Objects pane will not display internal signals

• the Active Processes pane will not display internal processes

• the Locals pane will not display internal variables

• none of the hidden objects may be accessed through the Dataflow window or with
ModelSim commands

You can access the design units comprising your model via the library, and you may invoke
vsim (CR-373) directly on any of these design units and see the ports. To restrict even this
access in the lower levels of your design, you can use the following -nodebug options when
you compile:

Don’t use the =ports option on a design without hierarchy, or on the top level of a
hierarchical design. If you do, no ports will be visible for simulation. Rather, compile all
lower portions of the design with -nodebug=ports first, then compile the top level with
-nodebug alone.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

Note: -nodebug encrypts entire files. The Verilog `protect compiler directive allows
you to encrypt regions within a file. See "ModelSim compiler directives" (UM-155) for
details.

Command and switch Result

vcom -nodebug=ports makes the ports of a VHDL design unit invisible

vlog -nodebug=ports makes the ports of a Verilog design unit invisible

vlog -nodebug=pli prevents the use of PLI functions to interrogate the module for
information

vlog -nodebug=ports+pli combines the functions of -nodebug=ports and -nodebug=pli
Sim SE User’s Manual

 UM-71
4 - VHDL simulation

Chapter contents
Compiling VHDL files. UM-73

Creating a design library UM-73
Invoking the VHDL compiler UM-73
Dependency checking UM-73
Range and index checking UM-74
Subprogram inlining UM-74
Differences between language versions UM-75

Simulating VHDL designs UM-78
Simulator resolution limit UM-78
Default binding UM-79
Delta delays UM-80

Simulating with an elaboration file UM-82
Overview UM-82
Elaboration file flow UM-82
Creating an elaboration file UM-83
Loading an elaboration file UM-83
Modifying stimulus UM-84
Using with the PLI or FLI. UM-84

Checkpointing and restoring simulations UM-86
Checkpoint file contents UM-86
Controlling checkpoint file compression UM-87
The difference between checkpoint/restore and restart UM-87
Using macros with restart and checkpoint/restore UM-87

Using the TextIO package UM-88
Syntax for file declaration. UM-88
Using STD_INPUT and STD_OUTPUT within ModelSim . . . UM-89

TextIO implementation issues UM-90
Writing strings and aggregates UM-90
Reading and writing hexadecimal numbers UM-91
Dangling pointers UM-91
The ENDLINE function UM-91
The ENDFILE function UM-91
Using alternative input/output files UM-92
Providing stimulus UM-92

VITAL specification and source code UM-93

VITAL packages UM-93

ModelSim VITAL compliance. UM-93
VITAL compliance checking UM-94
VITAL compliance warnings UM-94

Compiling and simulating with accelerated VITAL packages . . . UM-95
ModelSim SE User’s Manual

UM-72 4 - VHDL simulation

Model
Util package UM-96
get_resolution UM-96
init_signal_driver() UM-97
init_signal_spy() UM-97
signal_force() UM-97
signal_release() UM-97
to_real() UM-98
to_time() UM-99

Foreign language interface UM-100

Modeling memory UM-101
’87 and ’93 example UM-101
’02 example UM-104

Affecting performance by cancelling scheduled events UM-108

Converting an integer into a bit_vector UM-109

This chapter provides an overview of compilation and simulation for VHDL; using the
TextIO package with ModelSim; ModelSim’s implementation of the VITAL (VHDL
Initiative Towards ASIC Libraries) specification for ASIC modeling; and documentation
on ModelSim’s special built-in utilities package.

The TextIO package is defined within the VHDL Language Reference Manual, IEEE Std
1076; it allows human-readable text input from a declared source within a VHDL file
during simulation.

Note: ModelSim VHDL is not supported in ModelSim LE.
Sim SE User’s Manual

Compiling VHDL files UM-73
Compiling VHDL files

Creating a design library

Before you can compile your source files, you must create a library in which to store the
compilation results. Use vlib (CR-356) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX, MS Windows, or DOS
commands – always use the vlib command (CR-356).

See "Design libraries" (UM-57) for additional information on working with libraries.

Invoking the VHDL compiler

ModelSim compiles one or more VHDL design units with a single invocation of vcom (CR-

311), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation is important – you must compile
any entities or configurations before an architecture that references them.

You can simulate a design containing units written with 1076 -1987, 1076 -1993, and
1076-2002 versions of VHDL. To do so you will need to compile units from each VHDL
version separately. The vcom (CR-311) command compiles using 1076 -2002 rules by
default; use the -87 or -93 argument to vcom (CR-311) to compile units written with version
1076-1987 or 1076 -1993, respectively. You can also change the default by modifying the
VHDL93 variable in the modelsim.ini file (see "Preference variables located in INI files"
(UM-524) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-311) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation results will remain unchanged and you will not have to recompile design units
that depend on the entity.
ModelSim SE User’s Manual

UM-74 4 - VHDL simulation

Model
Range and index checking

A range check verifies that a scalar value defined with a range subtype is always assigned
a value within its range. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. You can
disable range checks (potentially offering a performance advantage) and index checks
using arguments to the vcom (CR-311) command. Or, you can use the NoRangeCheck and
NoIndexCheck variables in the modelsim.ini file to specify whether or not they are
performed. See "Preference variables located in INI files" (UM-524).

Range checks in ModelSim are slightly more restrictive than those specified by the VHDL
LRM. ModelSim requires any assignment to a signal to also be in range whereas the LRM
requires only that range checks be done whenever a signal is updated. Most assignments to
signals update the signal anyway, and the more restrictive requirement allows ModelSim
to generate better error messages.

Subprogram inlining

ModelSim attempts to inline subprograms at compile time to improve simulation
performance. This happens automatically and should be largely transparent. However, you
can disable automatic inlining two ways:

• Invoke vcom (CR-311) with the -O0 or -O1 argument

• Use the mti_inhibit_inline attribute as described below

Single-stepping through a simulation varies slightly depending on whether inlining
occurred. When single-stepping to a subprogram call that has not been inlined, the
simulator stops first at the line of the call, and then proceeds to the line of the first
executable statement in the called subprogram. If the called subprogram has been inlined,
the simulator does not first stop at the subprogram call, but stops immediately at the line of
the first executable statement.

mti_inhibit_inline attribute

You can disable inlining for individual design units (a package, architecture, or entity) or
subprograms with the mti_inhibit_inline attribute. Follow these rules to use the attribute:

• Declare the attribute within the design unit's scope as follows:

attribute mti_inhibit_inline : boolean;

• Assign the value true to the attribute for the appropriate scope. For example, to inhibit
inlining for a particular function (e.g., "foo"), add the following attribute assignment:

attribute mti_inhibit_inline of foo : procedure is true;

To inhibit inlining for a particular package (e.g., "pack"), add the following attribute
assignment:

attribute mti_inhibit_inline of pack : package is true;

Do similarly for entities and architectures.
Sim SE User’s Manual

Compiling VHDL files UM-75
Differences between language versions

There are three versions of the IEEE VHDL 1076 standard: VHDL-1987, VHDL-1993, and
VHDL-2002. The default language version for ModelSim is VHDL-2002. If your code was
written according to the ’87 or ’93 version, you may need to update your code or instruct
ModelSim to use the earlier versions’ rules.

To select a specific language version, do one of the following:

• Select the appropriate version from the compiler options menu in the GUI

• Invoke vcom (CR-311) using the argument -87, -93, or -2002

• Set the VHDL93 variable in the [vcom] section of the modelsim.ini file. Appropriate
values for VHDL93 are:

- 0, 87, or 1987 for VHDL-1987

- 1, 93, or 1993 for VHDL-1993

- 2, 02, or 2002 for VHDL-2002

The following is a list of language incompatibilities that may cause problems when
compiling a design.

• The only major problem between VHDL-93 and VHDL-2002 is the addition of the
keyword "PROTECTED". VHDL-93 programs which use this as an identifier should
choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

• VITAL and SDF

It is important to use the correct language version for VITAL. VITAL2000 must be
compiled with VHDL-93 or VHDL-2002. VITAL95 must be compiled with VHDL-87.
A typical error message that indicates the need to compile under language version
VHDL-87 is:

"VITALPathDelay DefaultDelay parameter must be locally static"

• Purity of NOW

In VHDL-93 the function "now" is impure. Consequently, any function that invokes
"now" must also be declared to be impure. Such calls to "now" occur in VITAL. A typical
error message:

"Cannot call impure function 'now' from inside pure function '<name>'"

• Files

File syntax and usage changed between VHDL-87 and VHDL-93. In many cases vcom
issues a warning and continues:

"Using 1076-1987 syntax for file declaration."

In addition, when files are passed as parameters, the following warning message is
produced:

"Subprogram parameter name is declared using VHDL 1987 syntax."

This message often involves calls to endfile(<name>) where <name> is a file parameter.
ModelSim SE User’s Manual

UM-76 4 - VHDL simulation

Model
• Files and packages

Each package header and body should be compiled with the same language version.
Common problems in this area involve files as parameters and the size of type
CHARACTER. For example, consider a package header and body with a procedure that
has a file parameter:

procedure proc1 (out_file : out std.textio.text) ...

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as:

"** Error: mixed_package_b.vhd(4): Parameter kinds do not conform between
declarations in package header and body: 'out_file'."

• Direction of concatenation

To solve some technical problems, the rules for direction and bounds of concatenation
were changed from VHDL-87 to VHDL-93. You won't see any difference in simple
variable/signal assignments such as:

v1 := a & b;

But if you (1) have a function that takes an unconstrained array as a parameter, (2) pass
a concatenation expression as a formal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all arrays
have "downto" direction.

• xnor

"xnor" is a reserved word in VHDL-93. If you declare an xnor function in VHDL-87
(without quotes) and compile it under VHDL-2002, you will get an error message like
the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRING IDENTIFIER

• 'FOREIGN attribute

In VHDL-93 package STANDARD declares an attribute 'FOREIGN. If you declare your
own attribute with that name in another package, then ModelSim issues a warning such
as the following:

-- Compiling package foopack

** Warning: foreign.vhd(9): (vcom-1140) VHDL-1993 added a definition of the
attribute foreign to package std.standard. The attribute is also defined in
package 'standard'. Using the definition from package 'standard'.

• Size of CHARACTER type

In VHDL-87 type CHARACTER has 128 values; in VHDL-93 it has 256 values. Code
which depends on this size will behave incorrectly. This situation occurs most commonly
in test suites that check VHDL functionality. It's unlikely to occur in practical designs. A
typical instance is the replacement of warning message:

"range nul downto del is null"

by

"range nul downto 'ÿ' is null" -- range is nul downto y(umlaut)
Sim SE User’s Manual

Compiling VHDL files UM-77
• bit string literals

In VHDL-87 bit string literals are of type bit_vector. In VHDL-93 they can also be of
type STRING or STD_LOGIC_VECTOR. This implies that some expressions that are
unambiguous in VHDL-87 now become ambiguous is VHDL-93. A typical error
message is:

** Error: bit_string_literal.vhd(5): Subprogram '=' is ambiguous. Suitable
definitions exist in packages 'std_logic_1164' and 'standard'.

• In VHDL-87 when using individual subelement association in an association list,
associating individual sub-elements with NULL is discouraged. In VHDL-93 such
association is forbidden. A typical message is:

"Formal '<name>' must not be associated with OPEN when subelements are
associated individually."
ModelSim SE User’s Manual

UM-78 4 - VHDL simulation

Model
Simulating VHDL designs

After compiling the design units, you simulate your designs with vsim (CR-373). This
section discusses simulation from the UNIX or Windows/DOS command line. You can
also use a project to simulate (see "Getting started with projects" (UM-40)) or the Simulate
dialog box (see "Start Simulation dialog" (GR-76)).

For VHDL invoke vsim (CR-373) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.

This example invokes vsim (CR-373) on the entity my_asic and the architecture structure:

vsim my_asic structure

vsim (CR-373) is capable of annotating a design using VITAL compliant models with timing
data from an SDF file. You can specify the min:typ:max delay by invoking vsim with the
-sdfmin, -sdftyp, or -sdfmax option. Using the SDF file f1.sdf in the current work
directory, the following invocation of vsim annotates maximum timing values for the
design unit my_asic:

vsim -sdfmax /my_asic=f1.sdf my_asic

By default, the timing checks within VITAL models are enabled. They can be disabled with
the +notimingchecks option. For example:

vsim +notimingchecks topmod

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The default
resolution limit is set to the value specified by the Resolution (UM-533) variable in the
modelsim.ini file. You can view the current resolution by invoking the report command
(CR-244) with the simulator state option.

Overriding the resolution

You can override ModelSim’s default resolution by specifying the -t option on the
command line or by selecting a different Simulator Resolution in the Simulate dialog box.
Available resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resolution:

vsim -t 10ps topmod

Clearly you need to be careful when doing this type of operation. If the resolution set by -t
is larger than a delay value in your design, the delay values in that design unit are rounded
to the closest multiple of the resolution. In the example above, a delay of 4 ps would be
rounded to 0 ps.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.
Sim SE User’s Manual

Simulating VHDL designs UM-79
Default binding

By default ModelSim performs default binding when you load the design with vsim (CR-

373). The advantage of performing default binding at load time is that it provides more
flexibility for compile order. Namely, entities don't necessarily have to be compiled before
other entities/architectures which instantiate them.

However, you can force ModelSim to perform default binding at compile time. This may
allow you to catch design errors (e.g., entities with incorrect port lists) earlier in the flow.
Use one of these two methods to change when default binding occurs:

• Specify the -bindAtCompile argument to vcom (CR-311)

• Set the BindAtCompile (UM-527) variable in the modelsim.ini to 1 (true)

Default binding rules

When looking for an entity to bind with, ModelSim searches the currently visible libraries
for an entity with the same name as the component. ModelSim does this because IEEE
1076-1987 contained a flaw that made it almost impossible for an entity to be directly
visible if it had the same name as the component. In short, if a component was declared in
an architecture, any like-named entity above that declaration would be hidden because
component/entity names cannot be overloaded. As a result we implemented the following
rules for determining default binding:

• If performing default binding at load time, search the libraries specified with the -Lf
argument to vsim.

• If a directly visible entity has the same name as the component, use it.

• If an entity would be directly visible in the absence of the component declaration, use it.

• If the component is declared in a package, search the library that contained the package
for an entity with the same name.

If none of these methods is successful, ModelSim will also do the following:

• Search the work library.

• Search all other libraries that are currently visible by means of the library clause.

• If performing default binding at load time, search the libraries specified with the -L
argument to vsim.

Note that these last three searches are an extension to the 1076 standard.

Disabling default binding

If you want default binding to occur only via configurations, you can disable ModelSim’s
normal default binding methods by setting the RequireConfigForAllDefaultBinding (UM-

527) variable in the modelsim.ini to 1 (true).
ModelSim SE User’s Manual

UM-80 4 - VHDL simulation

Model
Delta delays

Event-based simulators such as ModelSim may process many events at a given simulation
time. Multiple signals may need updating, statements that are sensitive to these signals
must be executed, and any new events that result from these statements must then be
queued and executed as well. The steps taken to evaluate the design without advancing
simulation time are referred to as "delta times" or just "deltas."

The diagram below represents the process for VHDL designs. This process continues until
the end of simulation time.

This mechanism in event-based simulators may cause unexpected results. Consider the
following code snippet:

clk2 <= clk;

process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;

end if;
 end process;

process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0;
 end if;
 end process;

Execute
concurrent
statements at
current time

Advance
delta time

Any transactions
to process?

No

Yes

Any events to
process?

No

Execute concurrent
statements that are
sensitive to events

Advance
simulation
time

Yes
Sim SE User’s Manual

Simulating VHDL designs UM-81
In this example you have two synchronous processes, one triggered with clk and the other
with clk2. To your surprise, the signals change in the clk2 process on the same edge as they
are set in the clk process. As a result, the value of inp appears at s1 rather than s0.

During simulation an event on clk occurs (from the testbench). From this event ModelSim
performs the "clk2 <= clk" assignment and the process which is sensitive to clk. Before
advancing the simulation time, ModelSim finds that the process sensitive to clk2 can also
be run. Since there are no delays present, the effect is that the value of inp appears at s1 in
the same simulation cycle.

In order to get the expected results, you must do one of the following:

• Insert a delay at every output

• Make certain to use the same clock

• Insert a delta delay

To insert a delta delay, you would modify the code like this:

process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;
 s0_delayed <= s0;
 end if;
 end process;

 process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0_delayed;
 end if;
 end process;

The best way to debug delta delay problems is observe your signals in the List window.
There you can see how values change at each delta time.

Detecting infinite zero-delay loops

If a large number of deltas occur without advancing time, it is usually a symptom of an
infinite zero-delay loop in the design. In order to detect the presence of these loops,
ModelSim defines a limit, the “iteration limit", on the number of successive deltas that can
occur. When ModelSim reaches the iteration limit, it issues a warning message.

The iteration limit default value is 5000. If you receive an iteration limit warning, first
increase the iteration limit and try to continue simulation. You can set the iteration limit
from the Simulate > Runtime Options menu or by modifying the IterationLimit (UM-532)
variable in the modelsim.ini. See "Preference variables located in INI files" (UM-524) for
more information on modifying the modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which
signals or variables are continuously oscillating. Two common causes are a loop that has
no exit, or a series of gates with zero delay where the outputs are connected back to the
inputs.
ModelSim SE User’s Manual

UM-82 4 - VHDL simulation

Model
Simulating with an elaboration file

Overview

The ModelSim compiler generates a library format that is compatible across platforms.
This means the simulator can load your design on any supported platform without having
to recompile first. Though this architecture offers a benefit, it also comes with a possible
detriment: the simulator has to generate platform-specific code every time you load your
design. This impacts the speed with which the design is loaded.

Starting with ModelSim version 5.6, you can generate a loadable image (elaboration file)
which can be simulated repeatedly. On subsequent simulations, you load the elaboration
file rather than loading the design "from scratch." Elaboration files load quickly.

Why an elaboration file?

In many cases design loading time is not that important. For example, if you’re doing
"iterative design," where you simulate the design, modify the source, recompile and
resimulate, the load time is just a small part of the overall flow. However, if your design is
locked down and only the test vectors are modified between runs, loading time may
materially impact overall simulation time, particularly for large designs loading SDF files.

Another reason to use elaboration files is for benchmarking purposes. Other simulator
vendors use elaboration files, and they distinguish between elaboration and run times. If
you are benchmarking ModelSim against another simulator that uses elaboration, make
sure you use an elaboration file with ModelSim as well so you’re comparing like to like.

One caveat with elaboration files is that they must be created and used in the same
environment. The same environment means the same hardware platform, the same OS and
patch version, and the same version of any PLI/FLI code loaded in the simulation.

Elaboration file flow

We recommend the following flow to maximize the benefit of simulating elaboration files.

1 If timing for your design is fixed, include all timing data when you create the elaboration
file (using the -sdf<type> instance=<filename> argument). If your timing is not fixed
in a Verilog design, you’ll have to use $sdf_annotate system tasks. Note that use of
$sdf_annotate causes timing to be applied after elaboration.

2 Apply all normal vsim arguments when you create the elaboration file. Some arguments
(primarily related to stimulus) may be superseded later during loading of the elaboration
file (see "Modifying stimulus" (UM-84) below).

3 Load the elaboration file along with any arguments that modify the stimulus (see below).
Sim SE User’s Manual

Simulating with an elaboration file UM-83
Creating an elaboration file

Elaboration file creation is performed with the same vsim settings or switches as a normal
simulation plus an elaboration specific argument. The simulation settings are stored in the
elaboration file and dictate subsequent simulation behavior. Some of these simulation
settings can be modified at elaboration file load time, as detailed below.

To create an elaboration file, use the -elab <filename> or -elab_cont <filename>
argument to vsim (CR-373).

The -elab_cont argument is used to create the elaboration file then continue with the
simulation after the elaboration file is created. You can use the -c switch with -elab_cont
to continue the simulation in command-line mode.

Loading an elaboration file

To load an elaboration file, use the -load_elab <filename> argument to vsim (CR-373). By
default the elaboration file will load in command-line mode or interactive mode depending
on the argument (-c or -i) used during elaboration file creation. If no argument was used
during creation, the -load_elab argument will default to the interactive mode.

The vsim arguments listed below can be used with -load_elab to affect the simulation.

+<plus_args>
-c or -i
-do <do_file>
-vcdread <filename>
-vcdstim <filename>
-filemap_elab <HDLfilename>=<NEWfilename>
-l <log_file>
-trace_foreign <level>
-quiet
-wlf <filename>

Modification of an argument that was specified at elaboration file creation, in most cases,
causes the previous value to be replaced with the new value. Usage of the -quiet argument
at elaboration load causes the mode to be toggled from its elaboration creation setting.

All other vsim arguments must be specified when you create the elaboration file, and they
cannot be used when you load the elaboration file.

Important: Elaboration files can be created in command-line mode only. You cannot
create an elaboration file while running the ModelSim GUI.

Important: The elaboration file must be loaded under the same environment in which it
was created. The same environment means the same hardware platform, the same OS
and patch version, and the same version of any PLI/FLI code loaded in the simulation.
ModelSim SE User’s Manual

UM-84 4 - VHDL simulation

Model
Modifying stimulus

A primary use of elaboration files is repeatedly simulating the same design with different
stimulus. The following mechanisms allow you to modify stimulus for each run.

• Use of the change command to modify parameters or generic values. This affects values
only; it has no effect on triggers, compiler directives, or generate statements that
reference either a generic or parameter.

• Use of the -filemap_elab <HDLfilename>=<NEWfilename> argument to establish a
map between files named in the elaboration file. The <HDLfilename> file name, if it
appears in the design as a file name (for example, a VHDL FILE object as well as some
Verilog sysfuncs that take file names), is substituted with the <NEWfilename> file
name. This mapping occurs before environment variable expansion and can’t be used to
redirect stdin/stdout.

• VCD stimulus files can be specified when you load the elaboration file. Both vcdread and
vcdstim are supported. Specifying a different VCD file when you load the elaboration file
supersedes a stimulus file you specify when you create the elaboration file.

• In Verilog, the use of +args which are readable by the PLI routine mc_scan_plusargs().
+args values specified when you create the elaboration file are superseded by +args
values specified when you load the elaboration file.

Using with the PLI or FLI

PLI models do not require special code to function with an elaboration file as long as the
model doesn't create simulation objects in its standard tf routines. The sizetf, misctf and
checktf calls that occur during elaboration are played back at -load_elab to ensure the PLI
model is in the correct simulation state. Registered user tf routines called from the Verilog
HDL will not occur until -load_elab is complete and the PLI model's state is restored.

By default, FLI models are activated for checkpoint during elaboration file creation and are
activated for restore during elaboration file load. (See the "Using checkpoint/restore with
the FLI" section of the FLI Reference manual for more information.) FLI models that
support checkpoint/restore will function correctly with elaboration files.

FLI models that don't support checkpoint/restore may work if simulated with the
-elab_defer_fli argument. When used in tandem with -elab, -elab_defer_fli defers calls to
the FLI model's initialization function until elaboration file load time. Deferring FLI
initialization skips the FLI checkpoint/restore activity (callbacks, mti_IsRestore(), ...) and
may allow these models to simulate correctly. However, deferring FLI initialization also
causes FLI models in the design to be initialized in order with the entire design loaded. FLI
models that are sensitive to this ordering may still not work correctly even if you use
-elab_defer_fli.

Syntax

See the vsim command (CR-373) for details on -elab, -elab_cont, -elab_defer_fli,
-compress_elab, -filemap_elab, and -load_elab.
Sim SE User’s Manual

Simulating with an elaboration file UM-85
Example

Upon first simulating the design, use vsim -elab <filename>
<library_name.design_unit> to create an elaboration file that will be used in subsequent
simulations.

In subsequent simulations you simply load the elaboration file (rather than the design) with
vsim -load_elab <filename>.

To change the stimulus without recoding, recompiling, and reloading the entire design,
Modelsim allows you to map the stimulus file (or files) of the original design unit to an
alternate file (or files) with the -filemap_elab switch. For example, the VHDL code for
initiating stimulus might be:

FILE vector_file : text IS IN "vectors";

where vectors is the stimulus file.

If the alternate stimulus file is named, say, alt_vectors, then the correct syntax for changing
the stimulus without recoding, recompiling, and reloading the entire design is as follows:

vsim -load_elab <filename> -filemap_elab vectors=alt_vectors
ModelSim SE User’s Manual

UM-86 4 - VHDL simulation

Model
Checkpointing and restoring simulations

The checkpoint (CR-93) and restore (CR-248) commands allow you to save and restore the
simulation state within the same invocation of vsim or between vsim sessions.

Checkpoint file contents

The following things are saved with checkpoint and restored with the restore command:

• simulation kernel state

• vsim.wlf file

• signals listed in the List and Wave windows

• file pointer positions for files opened under VHDL

• file pointer positions for files opened by the Verilog $fopen system task

• state of foreign architectures

• state of PLI/VPI code

Checkpoint exclusions

You cannot checkpoint/restore the following:

• state of macros

• changes made with the command-line interface (such as user-defined Tcl commands)

• state of graphical user interface windows

• toggle statistics

If you use the foreign interface, you will need to add additional function calls in order to
use checkpoint/restore. See the FLI Reference Manual or Appendix D - Verilog PLI / VPI
/ DPI for more information.

Action Definition Command used

checkpoint saves the simulation state checkpoint <filename>

"warm" restore restores a checkpoint file saved in a
current vsim session

restore <filename>

"cold" restore restores a checkpoint file saved in a
previous vsim session (i.e., after
quitting ModelSim)

vsim -restore <filename>
Sim SE User’s Manual

Checkpointing and restoring simulations UM-87
Controlling checkpoint file compression

The checkpoint file is normally compressed. To turn off the compression, use the following
command:

set CheckpointCompressMode 0

To turn compression back on, use this command:

set CheckpointCompressMode 1

You can also control checkpoint compression using the modelsim.ini file in the [vsim]
section (use the same 0 or 1 switch):

[vsim]
CheckpointCompressMode = <switch>

The difference between checkpoint/restore and restart

The restart (CR-246) command resets the simulator to time zero, clears out any logged
waveforms, and closes any files opened under VHDL and the Verilog $fopen system task.
You can get the same effect by first doing a checkpoint at time zero and later doing a
restore. Using restart, however, is likely to be faster and you don't have to save the
checkpoint. To set the simulation state to anything other than time zero, you need to use
checkpoint/restore.

Using macros with restart and checkpoint/restore

The restart (CR-246) command resets and restarts the simulation kernel, and zeros out any
user-defined commands, but it does not touch the state of the macro interpreter. This lets
you do restart commands within macros.

The pause mode indicates that a macro has been interrupted. That condition will not be
affected by a restart, and if the restart is done with an interrupted macro, the macro will still
be interrupted after the restart.

The situation is similar for using checkpoint/restore without quitting ModelSim; that is,
doing a checkpoint (CR-93) and later in the same session doing a restore (CR-248) of the
earlier checkpoint. The restore does not touch the state of the macro interpreter so you may
also do checkpoint and restore commands within macros.
ModelSim SE User’s Manual

UM-88 4 - VHDL simulation

Model
Using the TextIO package

To access the routines in TextIO, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextIO is:

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN

PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;

BEGIN
WRITE (LLL, i);
WRITELINE (OUTPUT, LLL);
WAIT;

END PROCESS;
END simple_behavior;

Syntax for file declaration

The VHDL’87 syntax for a file declaration is:

file identifier : subtype_indication is [mode] file_logical_name ;

where "file_logical_name" must be a string expression.

In newer versions of the 1076 spec, syntax for a file declaration is:

file identifier_list : subtype_indication [file_open_information] ;

where "file_open_information" is:

[open file_open_kind_expression] is file_logical_name

You can specify a full or relative path as the file_logical_name; for example (VHDL’87):

file filename : TEXT is in "/usr/rick/myfile";

Normally if a file is declared within an architecture, process, or package, the file is opened
when you start the simulator and is closed when you exit from it. If a file is declared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNs from the subprogram. Alternatively, the opening of files can be delayed until
the first read or write by setting the DelayFileOpen variable in the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileLimit
variable. These variables help you manage a large number of files during simulation. See
Appendix B - ModelSim variables for more details.
Sim SE User’s Manual

Using the TextIO package UM-89
Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL’87 TextIO package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

Updated versions of the TextIO package contain these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

STD_INPUT is a file_logical_name that refers to characters that are entered interactively
from the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Transcript pane. The lines written to the STD_OUTPUT file
appear in the Transcript.
ModelSim SE User’s Manual

UM-90 4 - VHDL simulation

Model
TextIO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the TextIO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler is not allowed to determine the argument type until it knows which
function is being called.

The following procedure call also generates an error:

WRITE (L, "010101");

This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

• Use a qualified expression to specify the type, as in:

WRITE (L, string’("hello"));

• Call a procedure that is not overloaded, as in:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the
io_utils package, which is located in the file <install_dir>/modeltech/examples/
io_utils.vhd.
Sim SE User’s Manual

TextIO implementation issues UM-91
Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbers is not specified in standard VHDL. The
Issues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the TextIO package reads and writes only decimal
numbers.

To expand this functionality, ModelSim supplies hexadecimal routines in the package
io_utils, which is located in the file <install_dir>/modeltech/examples/io_utils.vhd. To use
these routines, compile the io_utils package and then include the following use clauses in
your VHDL source code:

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the TextIO package, because
WRITELINE de-allocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(L1.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Standard VHDL Language Reference
Manual, IEEE Std 1076-1987 contains invalid VHDL syntax and cannot be implemented
in VHDL. This is because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the TextIO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE function

In the VHDL Language Reference Manuals, the ENDFILE function is listed as:

-- function ENDFILE (L: in TEXT) return BOOLEAN;

As you can see, this function is commented out of the standard TextIO package. This is
because the ENDFILE function is implicitly declared, so it can be used with files of any
type, not just files of type TEXT.
ModelSim SE User’s Manual

UM-92 4 - VHDL simulation

Model
Using alternative input/output files

You can use the TextIO package to read and write to your own files. To do this, just declare
an input or output file of type TEXT. For example, for an input file:

The VHDL’87 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL’93 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

Then include the identifier for this file ("myinput" in this example) in the READLINE or
WRITELINE procedure call.

Flushing the TEXTIO buffer

Flushing of the TEXTIO buffer is controlled by the UnbufferedOutput (UM-534) variable in
the modelsim.ini file.

Providing stimulus

You can stimulate and test a design by reading vectors from a file, using them to drive
values onto signals, and testing the results. A VHDL test bench has been included with the
ModelSim install files as an example. Check for this file:

<install_dir>/modeltech/examples/stimulus.vhd
Sim SE User’s Manual

VITAL specification and source code UM-93
VITAL specification and source code

VITAL ASIC Modeling Specification

The IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

IEEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packages is provided in the /<install_dir>/modeltech/
vhdl_src/vital2.2b, /vital95, or /vital2000 directories.

VITAL packages

VITAL 1995 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 2000 accelerated packages are pre-compiled into the vital2000 library.
If you need to use the newer library, you either need to change the ieee library mapping or
add a use clause to your VHDL code to access the VITAL 2000 packages.

To change the ieee library mapping, issue the following command:

vmap ieee <modeltech>/vital2000

Or, alternatively, add use clauses to your code:

LIBRARY vital2000;
USE vital2000.vital_primitives.all;
USE vital2000.vital_timing.all;
USE vital2000.vital_memory.all;

Note that if your design uses two libraries -one that depends on vital95 and one that depends
on vital2000 - then you will have to change the references in the source code to vital2000.
Changing the library mapping will not work.

ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. ModelSim is compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, ModelSim accelerates the VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are
functionally equivalent to the IEEE 1076.4 VITAL ASIC Modeling Specification (VITAL
1995 and 2000).
ModelSim SE User’s Manual

http://www.ieee.org

UM-94 4 - VHDL simulation

Model
VITAL compliance checking

Compliance checking is important in enabling VITAL acceleration; to qualify for global
acceleration, an architecture must be VITAL-level-one compliant. vcom (CR-311)
automatically checks for VITAL 2000 compliance on all entities with the VITAL_Level0
attribute set, and all architectures with the VITAL_Level0 or VITAL_Level1 attribute set.

If you are using VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-311) with the option -novitalcheck. You can
turn off compliance checking for VITAL 1995 and VITAL 2000 as well, but we strongly
suggest that you leave checking on to ensure optimal simulation.

VITAL compliance warnings

The following LRM errors are printed as warnings (if they were considered errors they
would prevent VITAL level 1 acceleration); they do not affect how the architecture
behaves.

• Starting index constraint to DataIn and PreviousDataIn parameters to VITALStateTable
do not match (1076.4 section 6.4.3.2.2)

• Size of PreviousDataIn parameter is larger than the size of the DataIn parameter to
VITALStateTable (1076.4 section 6.4.3.2.2)

• Signal q_w is read by the VITAL process but is NOT in the sensitivity list (1076.4 section
6.4.3)

The first two warnings are minor cases where the body of the VITAL 1995 LRM is slightly
stricter than the package portion of the LRM. Since either interpretation will provide the
same simulation results, we chose to make these two cases warnings.

The last warning is a relaxation of the restriction on reading an internal signal that is not in
the sensitivity list. This is relaxed only for the CheckEnabled parameters of the timing
checks, and only if they are not read elsewhere.

You can control the visibility of VITAL compliance-check warnings in your vcom (CR-311)
transcript. They can be suppressed by using the vcom -nowarn switch as in
vcom -nowarn 6. The 6 comes from the warning level printed as part of the warning, i.e.,
** WARNING: [6]. You can also add the following line to your modelsim.ini file in the
[vcom] VHDL compiler control variables (UM-527) section.

[vcom]
Show_VitalChecksWarnings = 0
Sim SE User’s Manual

Compiling and simulating with accelerated VITAL packages UM-95
Compiling and simulating with accelerated VITAL packages

vcom (CR-311) automatically recognizes that a VITAL function is being referenced from
the ieee library and generates code to call the optimized built-in routines.

Optimization occurs on two levels:

• VITAL Level-0 optimization
This is a function-by-function optimization. It applies to all level-0 architectures, and any
level-1 architectures that failed level-1 optimization.

• VITAL Level-1 optimization
Performs global optimization on a VITAL 3.0 level-1 architecture that passes the VITAL
compliance checker. This is the default behavior. Note that your models will run faster
but at the cost of not being able to see the internal workings of the models.

Compiler options for VITAL optimization

Several vcom (CR-311) options control and provide feedback on VITAL optimization:

-novital

Causes vcom to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages. Allows breakpoints to be set in the VITAL
behavior process and permits single stepping through the VITAL procedures to debug
your model. Also, all of the VITAL data can be viewed in the Locals or Objects pane.

-O0 | -O4

Lowers the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable optimizations with -O4 (default).

-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration.

ModelSim VITAL built-ins will be updated in step with new releases of the VITAL
packages.
ModelSim SE User’s Manual

UM-96 4 - VHDL simulation

Model
Util package

The util package, included in ModelSim versions 5.5 and later, serves as a container for
various VHDL utilities. The package is part of the modelsim_lib library which is located in
the modeltech tree and is mapped in the default modelsim.ini file.

To access the utilities in the package, you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

get_resolution

get_resolution returns the current simulator resolution as a real number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution;

Returns

Arguments

None

Related functions

to_real() (UM-98)

to_time() (UM-99)

Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

Name Type Description

resval real The simulator resolution represented as a real
Sim SE User’s Manual

Util package UM-97
init_signal_driver()

The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net onto
an existing VHDL signal or Verilog net. This allows you to drive signals or nets at any level
of the design hierarchy from within a VHDL architecture (e.g., a testbench).

See init_signal_driver (UM-419) in Chapter 17 - Signal Spy for complete details.

init_signal_spy()

The init_signal_spy() utility mirrors the value of a VHDL signal or Verilog register/net
onto an existing VHDL signal or Verilog register. This allows you to reference signals,
registers, or nets at any level of hierarchy from within a VHDL architecture (e.g., a
testbench).

See init_signal_spy (UM-422) in Chapter 17 - Signal Spy for complete details.

signal_force()

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net. This allows you to force signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (e.g., a testbench). A signal_force works
the same as the force command (CR-180) with the exception that you cannot issue a
repeating force.

See In this example, the value of /top/uut/inst1/sig1 is mirrored onto /top/top_sig1.
signal_force (UM-425) in Chapter 17 - Signal Spy for complete details.

signal_release()

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register or net. This allows you to release signals, registers, or nets at any
level of the design hierarchy from within a VHDL architecture (e.g., a testbench). A
signal_release works the same as the noforce command (CR-208).

See signal_release (UM-427) in Chapter 17 - Signal Spy for complete details.
ModelSim SE User’s Manual

UM-98 4 - VHDL simulation

Model
to_real()

to_real() converts the physical type time value into a real value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fs to a real and the simulator
resolution was ps, then the real value would be 2.0 (i.e., 2 ps).

Syntax

realval := to_real(timeval);

Returns

Arguments

Related functions

get_resolution (UM-96)

to_time() (UM-99)

Example

If the simulator resolution is set to ps, and you enter the following function:

realval := to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be
in units of nanoseconds (ns) instead, you would use the get_resolution (UM-96) function to
recalculate the value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

Name Type Description

realval real The time value represented as a real with
respect to the simulator resolution

Name Type Description

timeval time The value of the physical type time
Sim SE User’s Manual

Util package UM-99
to_time()

to_time() converts a real value into a time value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution.
For example, if you were converting 5.9 to a time and the simulator resolution was ps, then
the time value would be 6 ps.

Syntax

timeval := to_time(realval);

Returns

Arguments

Related functions

get_resolution (UM-96)

to_real() (UM-98)

Example

If the simulator resolution is set to ps, and you enter the following function:

timeval := to_time(72.49);

then the value returned to timeval would be 72 ps.

Name Type Description

timeval time The real value represented as a physical type
time with respect to the simulator resolution

Name Type Description

realval real The value of the type real
ModelSim SE User’s Manual

UM-100 4 - VHDL simulation

Model
Foreign language interface

Foreign language interface (FLI) routines are C programming language functions that
provide procedural access to information within Model Technology's HDL simulator,
vsim. A user-written application can use these functions to traverse the hierarchy of an
HDL design, get information about and set the values of VHDL objects in the design, get
information about a simulation, and control (to some extent) a simulation run.

ModelSim’s FLI interface is described in detail in the ModelSim FLI Reference. This
document is available from the Help menu within ModelSim or in the docs directory of a
ModelSim installation.
Sim SE User’s Manual

Modeling memory UM-101
Modeling memory

As a VHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

• You may get a "memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate enough storage.

• Or, you may get very long load, elaboration, or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), all of which needs to be loaded or initialized
before your simulation starts.

Modeling memory with variables or protected types instead provides some excellent
performance benefits:

• storage required to model the memory can be reduced by 1-2 orders of magnitude

• startup and run times are reduced

• associated memory allocation errors are eliminated

In the VHDL example below, we illustrate three alternative architectures for entity
memory:

• Architecture bad_style_87 uses a vhdl signal to store the ram data.

• Architecture style_87 uses variables in the memory process

• Architecture style_93 uses variables in the architecture.

For large memories, architecture bad_style_87 runs many times longer than the other two,
and uses much more memory. This style should be avoided.

Architectures style_87 and style_93 work with equal efficiently. However, VHDL 1993
offers additional flexibility because the ram storage can be shared between multiple
processes. For example, a second process is shown that initializes the memory; you could
add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions".

For completeness sake we also show an example using VHDL 2002 protected types, though
it offers no advantages over VHDL 1993 shared variables.

’87 and ’93 example
library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;

data_bits : integer := 32);
port(add_in : in std_ulogic_vector(add_bits-1 downto 0);

data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ulogic_vector(data_bits-1 downto 0);
cs, mwrite : in std_ulogic;
do_init : in std_ulogic);

subtype word is std_ulogic_vector(data_bits-1 downto 0);
ModelSim SE User’s Manual

UM-102 4 - VHDL simulation

Model
constant nwords : integer := 2 ** add_bits;
type ram_type is array(0 to nwords-1) of word;

end;

architecture style_93 of memory is

shared variable ram : ram_type;

begin
memory:
process (cs)

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process memory;

-- illustrates a second process using the shared variable
initialize:
process (do_init)

variable address : natural;
begin

if rising_edge(do_init) then
for address in 0 to nwords-1 loop

ram(address) := data_in;
end loop;

end if;
end process initialize;

end architecture style_93;

architecture style_87 of memory is
begin
memory:
process (cs)

variable ram : ram_type;

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process;

end style_87;

architecture bad_style_87 of memory is

signal ram : ram_type;

begin
memory:
process (cs)

variable address : natural := 0;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
Sim SE User’s Manual

Modeling memory UM-103
if (mwrite = '1') then
ram(address) <= data_in;
data_out <= data_in;

else
data_out <= ram(address);

end if;
end if;

end process;
end bad_style_87;

--
--
library ieee;
use ieee.std_logic_1164.all;

package conversions is
function sulv_to_natural(x : std_ulogic_vector) return

natural;
function natural_to_sulv(n, bits : natural) return

std_ulogic_vector;
end conversions;

package body conversions is

function sulv_to_natural(x : std_ulogic_vector) return
natural is

variable n : natural := 0;
variable failure : boolean := false;

begin
assert (x'high - x'low + 1) <= 31

report "Range of sulv_to_natural argument exceeds
natural range"

severity error;
for i in x'range loop

n := n * 2;
case x(i) is

when '1' | 'H' => n := n + 1;
when '0' | 'L' => null;
when others => failure := true;

end case;
end loop;
assert not failure

report "sulv_to_natural cannot convert indefinite
std_ulogic_vector"

severity error;

if failure then
return 0;

else
return n;

end if;
end sulv_to_natural;

function natural_to_sulv(n, bits : natural) return
std_ulogic_vector is

variable x : std_ulogic_vector(bits-1 downto 0) :=
(others => '0');

variable tempn : natural := n;
begin

for i in x'reverse_range loop
if (tempn mod 2) = 1 then

x(i) := '1';
end if;
tempn := tempn / 2;
ModelSim SE User’s Manual

UM-104 4 - VHDL simulation

Model
end loop;
return x;

end natural_to_sulv;

end conversions;

’02 example

-- Source: sp_syn_ram_protected.vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Various VHDL examples: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY sp_syn_ram_protected IS
 GENERIC (
 data_width : positive := 8;
 addr_width : positive := 3
);
 PORT (
 inclk : IN std_logic;
 outclk : IN std_logic;
 we : IN std_logic;
 addr : IN unsigned(addr_width-1 DOWNTO 0);
 data_in : IN std_logic_vector(data_width-1 DOWNTO 0);
 data_out : OUT std_logic_vector(data_width-1 DOWNTO 0)
);

END sp_syn_ram_protected;

ARCHITECTURE intarch OF sp_syn_ram_protected IS

TYPE mem_type IS PROTECTED
 PROCEDURE write (data : IN std_logic_vector(data_width-1 downto 0);

 addr : IN unsigned(addr_width-1 DOWNTO 0));
 IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))

RETURN
 std_logic_vector;

 END PROTECTED mem_type;

TYPE mem_type IS PROTECTED BODY
 TYPE mem_array IS ARRAY (0 TO 2**addr_width-1) OF

 std_logic_vector(data_width-1 DOWNTO 0);
 VARIABLE mem : mem_array;

 PROCEDURE write (data : IN std_logic_vector(data_width-1 downto 0);
 addr : IN unsigned(addr_width-1 DOWNTO 0)) IS

 BEGIN
 mem(to_integer(addr)) := data;

 END;

 IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))
RETURN

 std_logic_vector IS
 BEGIN
Sim SE User’s Manual

Modeling memory UM-105
 return mem(to_integer(addr));
 END;

 END PROTECTED BODY mem_type;

 SHARED VARIABLE memory : mem_type;

BEGIN

 ASSERT data_width <= 32
 REPORT "### Illegal data width detected"
 SEVERITY failure;

 control_proc : PROCESS (inclk, outclk)

 BEGIN
 IF (inclk'event AND inclk = '1') THEN
 IF (we = '1') THEN
 memory.write(data_in, addr);
 END IF;
 END IF;

 IF (outclk'event AND outclk = '1') THEN
 data_out <= memory.read(addr);
 END IF;
 END PROCESS;

END intarch;

-- Source: ram_tb.vhd
-- Component: VHDL testbench for RAM memory example
-- Remarks: Simple VHDL example: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram_tb IS
END ram_tb;

ARCHITECTURE testbench OF ram_tb IS

 -- Component declaration single-port RAM

 COMPONENT sp_syn_ram_protected
 GENERIC (
 data_width : positive := 8;
 addr_width : positive := 3
);
 PORT (
 inclk : IN std_logic;
 outclk : IN std_logic;
 we : IN std_logic;
 addr : IN unsigned(addr_width-1 DOWNTO 0);
 data_in : IN std_logic_vector(data_width-1 DOWNTO 0);
 data_out : OUT std_logic_vector(data_width-1 DOWNTO 0)
);
ModelSim SE User’s Manual

UM-106 4 - VHDL simulation

Model
 END COMPONENT;

 -- Intermediate signals and constants

 SIGNAL addr : unsigned(19 DOWNTO 0);
 SIGNAL inaddr : unsigned(3 DOWNTO 0);
 SIGNAL outaddr : unsigned(3 DOWNTO 0);
 SIGNAL data_in : unsigned(31 DOWNTO 0);
 SIGNAL data_in1 : std_logic_vector(7 DOWNTO 0);
 SIGNAL data_sp1 : std_logic_vector(7 DOWNTO 0);
 SIGNAL we : std_logic;
 SIGNAL clk : std_logic;
 CONSTANT clk_pd : time := 100 ns;

BEGIN

 -- instantiations of single-port RAM architectures.
 -- All architectures behave equivalently, but they
 -- have different implementations. The signal-based
 -- architecture (rtl) is not a recommended style.

 spram1 : entity work.sp_syn_ram_protected
 GENERIC MAP (
 data_width => 8,
 addr_width => 12)
 PORT MAP (
 inclk => clk,
 outclk => clk,
 we => we,
 addr => addr(11 downto 0),
 data_in => data_in1,
 data_out => data_sp1);

 -- clock generator

 clock_driver : PROCESS
 BEGIN
 clk <= '0';
 WAIT FOR clk_pd / 2;
 LOOP
 clk <= '1', '0' AFTER clk_pd / 2;
 WAIT FOR clk_pd;
 END LOOP;
 END PROCESS;

 -- data-in process

 datain_drivers : PROCESS(data_in)
 BEGIN
 data_in1 <= std_logic_vector(data_in(7 downto 0));
 END PROCESS;

 -- simulation control process

 ctrl_sim : PROCESS
Sim SE User’s Manual

Modeling memory UM-107
 BEGIN
 FOR i IN 0 TO 1023 LOOP
 we <= '1';
 data_in <= to_unsigned(9000 + i, data_in'length);
 addr <= to_unsigned(i, addr'length);
 inaddr <= to_unsigned(i, inaddr'length);
 outaddr <= to_unsigned(i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(7 + i, data_in'length);
 addr <= to_unsigned(1 + i, addr'length);
 inaddr <= to_unsigned(1 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(3, data_in'length);
 addr <= to_unsigned(2 + i, addr'length);
 inaddr <= to_unsigned(2 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(30330, data_in'length);
 addr <= to_unsigned(3 + i, addr'length);
 inaddr <= to_unsigned(3 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 we <= '0';
 addr <= to_unsigned(i, addr'length);
 outaddr <= to_unsigned(i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(1 + i, addr'length);
 outaddr <= to_unsigned(1 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(2 + i, addr'length);
 outaddr <= to_unsigned(2 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(3 + i, addr'length);
 outaddr <= to_unsigned(3 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 END LOOP;
 ASSERT false
 REPORT "### End of Simulation!"
 SEVERITY failure;
 END PROCESS;

END testbench;
ModelSim SE User’s Manual

UM-108 4 - VHDL simulation

Model
Affecting performance by cancelling scheduled events

Performance will suffer if events are scheduled far into the future but then cancelled before
they take effect. This situation will act like a memory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected waveforms in signal assignments.

The following code shows a wait with a time-out:

signals synch : bit := '0';
...
p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goes to 1 at 10 ns, the event
at 10 ms is marked as cancelled but not deleted, and a new event is scheduled at 10ms +
10ns. The cancelled events are not reclaimed until time 10ms is reached and the cancelled
event is processed. As a result there will be 500000 (10ms/20ns) cancelled but un-deleted
events. Once 10ms is reached, memory will no longer increase because the simulator will
be reclaiming events as fast as they are added.

For projected waveforms the following would behave the same way:

signals synch : bit := '0';
...
p: process(synch)
begin
 output <= '0', '1' after 10ms;
end process;

synch <= not synch after 10 ns;
Sim SE User’s Manual

Converting an integer into a bit_vector UM-109
Converting an integer into a bit_vector

The following code demonstrates how to convert an integer into a bit_vector.

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
signal s1 : bit_vector(7 downto 0);
signal int : integer := 45;

begin
p:process
begin

wait for 10 ns;
s1 <= bit_vector(to_signed(int,8));

end process p;
end only;
ModelSim SE User’s Manual

UM-110 4 - VHDL simulation

Model
Sim SE User’s Manual

 UM-111
5 - Verilog simulation

Chapter contents
Introduction UM-113

ModelSim Verilog basic flow UM-113

Compiling Verilog files UM-114
Incremental compilation UM-115
Library usage UM-117
Verilog-XL compatible compiler arguments UM-119
Verilog-XL `uselib compiler directive UM-120
Verilog configurations UM-122
Verilog generate statements UM-123

Optimizing Verilog designs UM-124
Running vopt on your design UM-124
Naming the optimized design UM-125
Enabling design object visibility with the +acc option . . . UM-126
Optimizing gate-level designs. UM-127
Event order and optimized designs UM-128
Timing checks in optimized designs UM-128

Simulating Verilog designs UM-129
Simulator resolution limit UM-129
Event ordering in Verilog designs UM-132
Negative timing check limits UM-136
Verilog-XL compatible simulator arguments UM-136

Simulating with an elaboration file UM-138
Overview UM-138
Elaboration file flow UM-138
Creating an elaboration file UM-139
Loading an elaboration file UM-139
Modifying stimulus UM-140
Using with the PLI or FLI. UM-140

Checkpointing and restoring simulations UM-142
Checkpoint file contents UM-142
Controlling checkpoint file compression UM-143
The difference between checkpoint/restore and restart . . . UM-143
Using macros with restart and checkpoint/restore UM-143

Cell libraries UM-144
SDF timing annotation UM-144
Delay modes UM-144

System tasks and functions UM-146
IEEE Std 1364 system tasks and functions UM-146
Verilog-XL compatible system tasks and functions UM-150
ModelSim Verilog system tasks and functions UM-152

Compiler directives UM-153
IEEE Std 1364 compiler directives UM-153
ModelSim SE User’s Manual

UM-112 5 - Verilog simulation

Model
Verilog-XL compatible compiler directives UM-154
ModelSim compiler directives UM-155

Sparse memory modeling UM-156
Manually marking sparse memories UM-156
Automatically enabling sparse memories UM-156
Combining automatic and manual modes UM-156
Limitations UM-157

Verilog PLI/VPI and SystemVerilog DPI UM-158
Sim SE User’s Manual

Introduction UM-113
Introduction

This chapter describes how to compile, optimize, and simulate Verilog designs with
ModelSim. ModelSim implements the Verilog language as defined by the IEEE Standards
1364-1995 and 1364-2001 and Accelera’s SystemVerilog 3.1. We recommend that you
obtain these specifications for reference.

The following functionality is partially implemented in ModelSim Verilog:

• Verilog Procedural Interface (VPI) (see /<install_dir>/modeltech/docs/technotes/
Verilog_VPI.note for details)

• SystemVerilog 3.1, Accellera’s Extensions to Verilog® (see /<install_dir>/modeltech/
docs/technotes/sysvlog.note for implementation details)

ModelSim Verilog basic flow

Simulating Verilog designs with ModelSim includes four general steps:

1 Compile your Verilog code into one or more libraries using the vlog command (CR-358).
See "Compiling Verilog files" (UM-114) for details.

2 Elaborate and optimize your design using the vopt command (CR-371). See "Optimizing
Verilog designs" (UM-124) for details.

3 Load your design with the vsim command (CR-373). See "Simulating Verilog designs"
(UM-129) for details.

4 Run and debug your design.
ModelSim SE User’s Manual

UM-114 5 - Verilog simulation

Model
Compiling Verilog files

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use either the File > New > Library menu command in the ModelSim
GUI or the vlib (CR-356) command to create a new library. For example:

vlib work

This creates a library named work. By default compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX commands – always use the
vlib command (CR-356).

See "Design libraries" (UM-57) for additional information on working with libraries.

Invoking the Verilog compiler

The ModelSim Verilog compiler, vlog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. You can also access the compiler via
the Compile > Compile menu command in the ModelSim GUI (see "Compile Source Files
dialog" (GR-59) for more information).

As you compile your design, the resulting object code for modules and UDPs is generated
into a library. As noted above, the compiler places results into the work library by default.
You can specify an alternate library with the -work argument.

Here is one example of a vlog command:

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.
Sim SE User’s Manual

Compiling Verilog files UM-115
Incremental compilation

By default, ModelSim Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, there is
no requirement that you compile the entire design in one invocation of the compiler.

You are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator.

Incremental compilation is made possible by deferring these bindings, and as a result some
errors cannot be detected during compilation. Commonly, these errors include: modules
that were referenced but not compiled, incorrect port connections, and incorrect
hierarchical references.

Example

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

module top;
or2 or2_i (n1, a, b);
and2 and2_i (n2, n1, c);

endmodule

Contents of and2.v:

module and2(y, a, b);
output y;
input a, b;
and(y, a, b);

endmodule

Contents of or2.v:

module or2(y, a, b);
output y;
input a, b;
or(y, a, b);

endmodule

Compile the design in top down order:

% vlog top.v
-- Compiling module top

Top level modules:
top

% vlog and2.v
-- Compiling module and2

Top level modules:
and2

% vlog or2.v
-- Compiling module or2

Top level modules:
or2
ModelSim SE User’s Manual

UM-116 5 - Verilog simulation

Model
Note that the compiler lists each module as a top level module, although, ultimately, only
top is a top-level module. If a module is not referenced by another module compiled in the
same invocation of the compiler, then it is listed as a top level module. This is just an
informative message and can be ignored during incremental compilation. The message is
more useful when you compile an entire design in one invocation of the compiler and need
to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Automatic incremental compilation with -incr

The most efficient method of incremental compilation is to manually compile only the
modules that have changed. However, this is not always convenient, especially if your
source files have compiler directive interdependencies (such as macros). In this case, you
may prefer to compile your entire design along with the -incr argument. This causes the
compiler to automatically determine which modules have changed and generate code only
for those modules.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top
-- Skipping module and2
-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in a recompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding a comment line) will cause all affected
modules to be recompiled. This happens because debug information must be kept current
so that ModelSim can trace back to the correct areas of the source code.
Sim SE User’s Manual

Compiling Verilog files UM-117
Library usage

All modules and UDPs in a Verilog design must be compiled into one or more libraries.
One library is usually sufficient for a simple design, but you may want to organize your
modules into various libraries for a complex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within a library.

The following is an example of how you may organize your ASIC cells into one library and
the rest of your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to
place the results in the asiclib library rather than the default work library.

Library search rules

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are
loaded from the library named work unless you prefix the modules with the <library>.
option. All other Verilog instantiations are resolved in the following order:

• Search libraries specified with -Lf arguments in the order they appear on the command
line.

• Search the library specified in the "Verilog-XL `uselib compiler directive" (UM-120).

• Search libraries specified with -L arguments in the order they appear on the command
line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.
ModelSim SE User’s Manual

UM-118 5 - Verilog simulation

Model
Handling sub-modules with common names

Sometimes in one design you need to reference two different modules that have the same
name. This situation can occur if you have hierarchical modules organized into separate
libraries, and you have commonly-named sub-modules in the libraries that have different
definitions. This may happen if you are using vendor-supplied libraries.

For example, say you have the following:

The normal library search rules will fail in this situation. For example, if you load the
design as follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolve to the lib1 version of cellX. On the other hand, if you
specify -L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, ModelSim implements a special interpretation of the expression
-L work. When you specify -L work first in the search library arguments you are directing
vsim to search for the instantiated module or UDP in the library that contains the module
that does the instantiation.

In the example above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

top

modA modB

modA modB

cellX cellX

lib1: lib2:
Sim SE User’s Manual

Compiling Verilog files UM-119
Verilog-XL compatible compiler arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to ModelSim. See the vlog command (CR-358) for a description
of each argument.

+define+<macro_name>[=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero
-f <filename>
+incdir+<directory>
+mindelays
+maxdelays
+nowarn<mnemonic>
+typdelays
-u

Arguments supporting source libraries

The compiler arguments listed below support source libraries in the same manner as
Verilog-XL. See the vlog command (CR-358) for a description of each argument.

Note that these source libraries are very different from the libraries that the ModelSim
compiler uses to store compilation results. You may find it convenient to use these
arguments if you are porting a design to ModelSim or if you are familiar with these
arguments and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. If
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This process is repeated until all references are resolved or until no new unresolved
references are found. Source libraries are searched in the order they appear on the command
line.

-v <filename>
-y <directory>
+libext+<suffix>
+librescan
+nolibcell
-R [<simargs>]
ModelSim SE User’s Manual

UM-120 5 - Verilog simulation

Model
Verilog-XL `uselib compiler directive

The `uselib compiler directive is an alternative source library management scheme to the
-v, -y, and +libext compiler arguments. It has the advantage that a design may reference
different modules having the same name. You compile designs that contain `uselib
directive statements using the -compile_uselibs argument (described below) to vlog (CR-

358).

The syntax for the `uselib directive is:

`uselib <library_reference>...

where <library_reference> is:

dir=<library_directory> | file=<library_file> | libext=<file_extension> |
lib=<library_name>

The library references are equivalent to command line arguments as follows:

dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
libext=<file_extension> +libext+<file_extension>

For example, the following directive

`uselib dir=/h/vendorA libext=.v

is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Since the `uselib directives are embedded in the Verilog source code, there is more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a `uselib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous `uselib directives.

-compile_uselibs argument

Use the -compile_uselibs argument to vlog (CR-358) to reference `uselib directives. The
argument finds the source files referenced in the directive, compiles them into
automatically created object libraries, and updates the modelsim.ini file with the logical
mappings to the libraries.

When using -compile_uselibs, ModelSim determines into which directory to compile the
object libraries by choosing, in order, from the following three values:

• The directory name specified by the -compile_uselibs argument. For example,
-compile_uselibs=./mydir

• The directory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables" (UM-521))

• A directory named mti_uselibs that is created in the current working directory
Sim SE User’s Manual

Compiling Verilog files UM-121
The following code fragment and compiler invocation show how two different modules
that have the same name can be instantiated within the same design:

module top;
`uselib dir=/h/vendorA libext=.v
NAND2 u1(n1, n2, n3);
`uselib dir=/h/vendorB libext=.v
NAND2 u2(n4, n5, n6);

endmodule

vlog -compile_uselibs top

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

`uselib is persistent

As mentioned above, the appearance of a `uselib directive in the source code explicitly
defines how instantiations that follow it are resolved. This may result in unexpected
consequences. For example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a `uselib directive. Since srtr.v is compiled after dut.v, the
`uselib directive is still in effect. When srtr is loaded it is using the `uselib directive from
dut.v to decide where to locate modules. If this is not what you intend, then you need to put
an empty `uselib at the end of dut.v to "close" the previous `uselib statement.
ModelSim SE User’s Manual

UM-122 5 - Verilog simulation

Model
Verilog configurations

The Verilog 2001 specification added configurations. Configurations specify how a design
is "assembled" during the elaboration phase of simulation. Configurations actually consist
of two pieces: the library mapping and the configuration itself. The library mapping is used
at compile time to determine into which libraries the source files are to be compiled. Here
is an example of a simple library map file:

library work ../top.v;
library rtlLib lrm_ex_top.v;
library gateLib lrm_ex_adder.vg;
library aLib lrm_ex_adder.v;

Here is an example of a library map file that uses -incdir:

library lib1 src_dir/*.v -incdir ../include_dir2, ../, my_incdir;

The name of the library map file is arbitrary. You specify the library map file using the
-libmap argument to the vlog command (CR-358). Alternatively, you can specify the file
name as the first item on the vlog command line, and the compiler will read it as a library
map file.

The library map file must be compiled along with the Verilog source files. Multiple map
files are allowed but each must be preceded by the -libmap argument.

The library map file and the configuration can exist in the same or different files. If they
are separate, only the map file needs the -libmap argument. The configuration is treated as
any other Verilog source file.

Configurations and the library named “work”

The library named “work” is treated specially by ModelSim (see "The library named
"work"" (UM-58) for details) for Verilog configurations. Consider the following code
example:

config cfg;
design top;
instance top.u1 use work.u1;

endconfig

In this case, work.u1 indicates to load u1 from the current library.
Sim SE User’s Manual

Compiling Verilog files UM-123
Verilog generate statements

The Verilog 2001 rules for generate statements have numerous inconsistencies and
ambiguities. As a result, ModelSim implements the rules that have been proposed for
Verilog 2005. Most of the rules are backwards compatible, but there is one key difference
related to name visibility.

Name visibility in generate statements

Consider the following code example:

module m;
 parameter p = 1;

 generate
 if (p)
 integer x = 1;
 else
 real x = 2.0;
 endgenerate

 initial $display(x);
endmodule

This code sample is legal under 2001 rules. However, it is illegal under the proposed 2005
rules and will cause an error in ModelSim. Under the new rules, you cannot hierarchically
reference a name in an anonymous scope from outside that scope. In the example above, x
does not propagate its visibility upwards, and each condition alternative is considered to be
an anonymous scope.

To fix the code such that it will simulate properly in ModelSim, write it like this instead:

module m;
 parameter p = 1;

 if (p) begin:s
 integer x = 1;
 end
 else begin:s
 real x = 2.0;
 end

 initial $display(s.x);
endmodule

Since the scope is named in this example, normal hierarchical resolution rules apply and
the code is fine.

Note too that the keywords generate - endgenerate are optional under the new rules and
are excluded in the second example.
ModelSim SE User’s Manual

UM-124 5 - Verilog simulation

Model
Optimizing Verilog designs

Once all of your design files are compiled into libraries, you will often want to optimize the
entire design to maximize simulator performance. The tool that performs global
optimizations is called vopt (CR-371).

Running vopt on your design

The vopt command (CR-371) loads compiled design units from their libraries and
regenerates optimized code. The basic flow is as follows:

• Compile all your modules with vlog -vopt

The -vopt argument notifies vlog that you intend to run vopt on the design. As a result,
vlog does not produce code. If you exclude the -vopt argument, vlog produces code and
then vopt reproduces the code in an optimized format. The code production from vlog is
therefore wasted.

• Run vopt on the top-level module to optimize the entire design

• Run vsim on the optimized design unit

Example

The following is an example invocation of vlog and vopt and the resulting transcript
messages:

% vlog -vopt cpu_rtl.v
-- Compiling module fp_unit
-- Compiling module mult_56
-- Compiling module testbench
-- Compiling module cpu
-- Compiling module i_unit
-- Compiling module mem_mux
-- Compiling module memory32
-- Compiling module op_unit

Top level modules:

testbench

% vopt testbench -o mydesign
Analyzing design...
Optimizing 8 modules of which 6 are inlined:
-- Inlining module i_unit(fast)
-- Inlining module mem_mux(fast)
-- Inlining module op_unit(fast)
-- Inlining module memory32(fast)
-- Inlining module mult_56(fast)
-- Inlining module fp_unit(fast)
-- Optimizing module cpu(fast)
-- Optimizing module testbench(fast)

Note: Gate-level designs should generally not be optimized with vopt. See "Optimizing
gate-level designs" (UM-127) below for more details.
Sim SE User’s Manual

Optimizing Verilog designs UM-125
The "Analyzing design..." message indicates that ModelSim is building the design
hierarchy, propagating parameters, and analyzing design object usage. This information is
then used to generate module code optimized for the specific design.

The vopt command creates an optimized version of the design in the working directory
using the name you specify with the -o argument. The entire library structure of the
optimized design is stored there, so you can run vsim (CR-373) directly on the name you
specified:

% vsim mydesign
Loading work.testbench(fast)
Loading work.cpu(fast)

Optimizing from the ModelSim GUI

To optimize a design using the GUI, follow these steps:

• Select Compile > Compile and check the Enable Optimization checkbox (this equates to
specifying -vopt to the vlog command). See "Compile Source Files dialog" (GR-59) for
details on the other options in the dialog.

• Select Simulate > Design Optimization and select the top-level design unit.

• Specify an Output Design Name.

• Select Start Immediately and then click OK.

See "Design Optimization dialog" (GR-70) for details on the other options in the dialog.

Naming the optimized design

As mentioned above, you provide a name for the optimized design using the -o argument
to vopt:

% vopt testbench -o opt1

You can see optimized designs in the GUI or with vdir (CR-328), delete them with vdel (CR-

327), etc. For example, a vdir command shows something like the following:

OPTIMIZED DESIGN opt1

Making the optimized flow the default

By default ModelSim operates in debug mode, and you have to manually invoke vopt to
optimize the design. If you set the VoptFlow (UM-534) variable in the modelsim.ini file to 1,
ModelSim switches to the optimized flow. With the optimized flow, vlog (CR-358) does not
produce code, and vsim (CR-373) automatically runs vopt on your design if you don’t run
it yourself.

In cases where vsim automatically runs vopt, you won’t have specified an optimized design
name with -o. Therefore, ModelSim issues a default name of "_opt[number]".
ModelSim SE User’s Manual

UM-126 5 - Verilog simulation

Model
Enabling design object visibility with the +acc option

Some of the optimizations performed by vopt impact design visibility to both the user
interface and the PLI routines. Many of the nets, ports, and registers are unavailable by
name in user interface commands and in the various graphic interface windows. In addition,
many of these objects do not have PLI Access handles, potentially affecting the operation
of PLI applications. However, a handle is guaranteed to exist for any object that is an
argument to a system task or function.

In the early stages of design, you may use one or more +acc options in conjunction with
vopt to enable access to specific design objects. Or, use the Visibility tab in the "Start
Simulation dialog" (GR-76).

Keep in mind that enabling design object access may reduce simulation performance.

The syntax for the +acc option is as follows:

+acc[=<spec>][+<module>[.]]

<spec> is one or more of the following characters:

If <spec> is omitted, then access is enabled for all objects.

<module> is a module name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, each separated by a "+". If no modules are
specified, then all modules are affected. We strongly recommend specifying modules when
using +acc. Doing so will lessen the impact on performance.

<spec> Meaning

b Enable access to individual bits of vector nets. This is necessary
for PLI applications that require handles to individual bits of
vector nets. Also, some user interface commands require this
access if you need to operate on net bits.

c Enable access to library cells. By default any Verilog module
that contains a non-empty specify block may be optimized, and
debug and PLI access may be limited. This option keeps module
cell visibility.

l Enable line number directives and process names for line
debugging, profiling, and code coverage.

n Enable access to nets.

p Enable access to ports. This disables the module inlining
optimization, and should be used for PLI applications that
require access to port handles, or for debugging (see below).

r Enable access to registers (including memories, integer,
time, and real types).

s Enable access to system tasks.

t Enable access to tasks and functions.
Sim SE User’s Manual

Optimizing Verilog designs UM-127
If your design uses PLI applications that look for object handles in the design hierarchy,
then it is likely that you will need to use the +acc option. For example, the built-in
$dumpvars system task is an internal PLI application that requires handles to nets and
registers so that it can call the PLI routine acc_vcl_add() to monitor changes and dump the
values to a VCD file. This requires that access is enabled for the nets and registers on which
it operates. Suppose you want to dump all nets and registers in the entire design, and that
you have the following $dumpvars call in your testbench (no arguments to $dumpvars
means to dump everything in the entire design):

initial $dumpvars;

Then you need to optimize your design as follows to enable net and register access for all
modules in the design:

% vopt +acc=rn testbench

As another example, suppose you only need to dump nets and registers of a particular
instance in the design (the first argument of 1 means to dump just the variables in the
instance specified by the second argument):

initial $dumpvars(1, testbench.u1);

Then you need to compile your design as follows (assuming testbench.u1 refers to the
module design):

% vopt +acc=rn+design testbench

Finally, suppose you need to dump everything in the children instances of testbench.u1 (the
first argument of 0 means to also include all children of the instance):

initial $dumpvars(0, testbench.u1);

Then you need to compile your design as follows:

% vopt +acc=rn+design. testbench

To gain maximum performance, it may be necessary to enable the minimum required
access within the design.

Optimizing gate-level designs

Gate-level designs should not be optimized with vopt. These designs often have large
netlists that are slow to optimize with vopt. In most cases we recommend the following
flow for optimizing gate-level designs:

• Compile the cell library using -fast. If the cell library is vendor supplied and the compiled
results will be placed in a read-only location, you should also use the -forcecode
argument along with -fast. The -forcecode argument ensures that code is generated for
inlined modules.

• Compile the device under test and testbench without -fast.

There are two cases where you should not follow this flow:

• If your testbench has hierarchical references into the cell library, optimizing the library
alone would result in unresolved references.

• If you are passing parameters to the cell library from either the testbench or the design
under test.
ModelSim SE User’s Manual

UM-128 5 - Verilog simulation

Model
In these cases, you should optimize the entire design with vopt.

Several switches to vlog can be used to further increase optimizations on gate-level designs.
The +nocheck arguments are described in the Command Reference under the vlog
command (CR-358).

You can use the write cell_report command (CR-421) and the -debugCellOpt argument to
the vlog command (CR-358) to obtain information about which cells have and have not been
optimized. write cell_report produces a text file that lists all modules. Modules with
"(cell)" following their names are optimized cells. For example,

Module: top
Architecture: fast

Module: bottom (cell)
Architecture: fast

In this case, both top and bottom were compiled with -fast, but top was not optimized and
bottom was.

The -debugCellOpt argument is used with -fast when compiling the cell library. Using this
argument produces output in the Transcript pane that identifies why certain cells were not
optimized.

Event order and optimized designs

As mentioned earlier in the chapter, the Verilog language does not require that the
simulator execute simultaneous events in any particular order. Optimizations performed by
vopt may expose event order dependencies that cause a design to behave differently than
when run unoptimized. Event order dependencies are considered errors and should be
corrected (see "Event ordering in Verilog designs" (UM-132) for details).

Timing checks in optimized designs

Timing checks are performed whether you optimize the design or not. In general you'll see
the same results in either case. However, in a cell where there are both interconnect delays
and conditional timing checks, you might see different timing check results.

Without vopt the conditional checks are evaluated with non-delayed values, complying
with the original IEEE Std 1364-1995 specification. With vopt the conditional checks will
be evaluated with delayed values, complying with the new IEEE Std 1364-2001
specification.
Sim SE User’s Manual

Simulating Verilog designs UM-129
Simulating Verilog designs

A Verilog design is ready for simulation after it has been compiled with vlog and possibly
optimized with vopt. The simulator may then be invoked with the names of the top-level
modules (many designs contain only one top-level module) or the name you assigned to the
optimized version of the design. For example, if your top-level modules are "testbench" and
"globals", then invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default all modules and UDPs are loaded from the
library named work. Modules and UDPs from other libraries can be specified using the -L
or -Lf arguments to vsim (see "Library usage" (UM-117) for details).

On successful loading of the design, the simulation time is set to zero, and you must enter
a run command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish is executed in the Verilog code. You can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The
resolution limit defaults to the smallest time precision found among all of the `timescale
compiler directives in the design. Here is an example of a `timescale directive:

`timescale 1 ns / 100 ps

The first number is the time units and the second number is the time precision. The directive
above causes time values to be read as ns and to be rounded to the nearest 100 ps.
ModelSim SE User’s Manual

UM-130 5 - Verilog simulation

Model
Modules without timescale directives

You may encounter unexpected behavior if your design contains some modules with
timescale directives and others without. The time units for modules without a timescale
directive default to the simulator resolution. For example, say you have the two modules
shown in the table below:

If you invoke vsim as vsim mod2 mod1 then Module 1 sets the simulator resolution to 10 ps.
Module 2 has no timescale directive, so the time units default to the simulator resolution,
in this case 10 ps. If you watched /mod1/set and /mod2/set in the Wave window, you’d see
that in Module 1 it transitions every 1.55 ns as expected (because of the 1 ns time unit in
the timescale directive). However, in Module 2, set transitions every 20 ps. That’s because
the delay of 1.55 in Module 2 is read as 15.5 ps and is rounded up to 20 ps.

In such cases ModelSim will issue the following warning message during elaboration:

** Warning: (vsim-3010) [TSCALE] - Module 'mod1' has a `timescale directive
in effect, but previous modules do not.

If you invoke vsim as vsim mod1 mod2, the simulation results would be the same but
ModelSim would produce a different warning message:

** Warning: (vsim-3009) [TSCALE] - Module 'mod2' does not have a `timescale
directive in effect, but previous modules do.

These warnings should ALWAYS be investigated.

If the design contains no `timescale directives, then the resolution limit and time units
default to the value specified by the Resolution (UM-533) variable in the modelsim.ini file.
(The variable is set to 1 ns by default.)

Multiple timescale directives

As alluded to above, your design can have multiple timescale directives. The timescale
directive takes effect where it appears in a source file and applies to all source files which
follow in the same vlog (CR-358) command. Separately compiled modules can also have
different timescales. The simulator determines the smallest timescale of all the modules in
a design and uses that as the simulator resolution.

Module 1 Module 2

`timescale 1 ns / 10 ps

module mod1 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin

set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule

module mod2 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin

set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule
Sim SE User’s Manual

Simulating Verilog designs UM-131
`timescale, -t, and rounding

The optional vsim argument -t sets the simulator resolution limit for the overall simulation.
If the resolution set by -t is larger than the precision set in a module, the time values in that
module are rounded up. If the resolution set by -t is smaller than the precision of the
module, the precision of that module remains whatever is specified by the `timescale
directive. Consider the following code:

`timescale 1 ns / 100 ps

module foo;

initial
#12.536 $display

The list below shows three possibilities for -t and how the delays in the module would be
handled in each case:

• -t not set

The delay will be rounded to 12.5 as directed by the module’s ‘timescale directive.

• -t is set to 1 fs

The delay will be rounded to 12.5. Again, the module’s precision is determined by the
‘timescale directive. ModelSim does not override the module’s precision.

• -t is set to 1 ns

The delay will be rounded to 12. The module’s precision is determined by the -t setting.
ModelSim has no choice but to round the module’s time values because the entire
simulation is operating at 1 ns.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.
ModelSim SE User’s Manual

UM-132 5 - Verilog simulation

Model
Event ordering in Verilog designs

Event-based simulators such as ModelSim may process multiple events at a given
simulation time. The Verilog language is defined such that you cannot explicitly control the
order in which simultaneous events are processed. Unfortunately, some designs rely on a
particular event order, and these designs may behave differently than you expect.

Event queues

Section 5 of the IEEE Std 1364-1995 LRM defines several event queues that determine the
order in which events are evaluated. At the current simulation time, the simulator has the
following pending events:

• active events

• inactive events

• non-blocking assignment update events

• monitor events

• future events

- inactive events

- non-blocking assignment update events

The LRM dictates that events are processed as follows – 1) all active events are processed;
2) the inactive events are moved to the active event queue and then processed; 3) the
non-blocking events are moved to the active event queue and then processed; 4) the monitor
events are moved to the active queue and then processed; 5) simulation advances to the next
time where there is an inactive event or a non-blocking assignment update event.

Within the active event queue, the events can be processed in any order, and new active
events can be added to the queue in any order. In other words, you cannot control event
order within the active queue. The example below illustrates potential ramifications of this
situation.

Say you have these four statements:

1 always@(q) p = q;

2 always @(q) p2 = not q;

3 always @(p or p2) clk = p and p2;

4 always @(posedge clk)

and current values as follows: q = 0, p = 0, p2=1
Sim SE User’s Manual

Simulating Verilog designs UM-133
The tables below show two of the many valid evaluations of these statements. Evaluation
events are denoted by a number where the number is the statement to be evaluated. Update
events are denoted <name>(old->new) where <name> indicates the reg being updated and
new is the updated value.

Again, both evaluations are valid. However, in Evaluation 1, clk has a glitch on it; in
Evaluation 2, clk doesn’t. This indicates that the design has a zero-delay race condition on
clk.

Table 1: Evaluation 1

Event being processed Active event queue

q(0 → 1)

q(0 → 1) 1, 2

1 p(0 → 1), 2

p(0 → 1) 3, 2

3 clk(0 → 1), 2

clk(0 → 1) 4, 2

4 2

2 p2(1 → 0)

p2(1 → 0) 3

3 clk(1 → 0)

clk(1 → 0) <empty>

Table 2: Evaluation 2

Event being processed Active event queue

q(0 → 1)

q(0 → 1) 1, 2

1 p(0 → 1), 2

2 p2(1 → 0), p(0 → 1)

p(0 → 1) 3, p2(1 → 0)

p2(1 → 0) 3

3 <empty> (clk doesn’t change)
ModelSim SE User’s Manual

UM-134 5 - Verilog simulation

Model
’Controlling’ event queues with blocking/non-blocking assignments

The only control you have over event order is to assign an event to a particular queue. You
do this via blocking or non-blocking assignments.

Blocking assignments

Blocking assignments place an event in the active, inactive, or future queues depending on
what type of delay they have:

• a blocking assignment without a delay goes in the active queue

• a blocking assignment with an explicit delay of 0 goes in the inactive queue

• a blocking assignment with a non-zero delay goes in the future queue

Non-blocking assignments

A non-blocking assignment goes into either the non-blocking assignment update event
queue or the future non-blocking assignment update event queue. (Non-blocking
assignments with no delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This insures that
all outputs of flip-flops do not change until after all flip-flops have been evaluated.
Attempting to use non-blocking assignments in combinational logic paths to remove race
conditions may only cause more problems. (In the preceding example, changing all
statements to non-blocking assignments would not remove the race condition.) This
includes using non-blocking assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

gen1: always @(master)
clk1 = master;

gen2: always @(clk1)
clk2 = clk1;

f1 : always @(posedge clk1)
begin

q1 <= d1;
end

f2: always @(posedge clk2)
begin

q2 <= q1;
end

If written this way, a value on d1 always takes two clock cycles to get from d1 to q2.
If you change clk1 = master and clk2 = clk1 to non-blocking assignments or q2 <= q1 and
q1 <= d1 to blocking assignments, then d1 may get to q2 is less than two clock cycles.

Debugging event order issues

Since many models have been developed on Verilog-XL, ModelSim tries to duplicate
Verilog-XL event ordering to ease the porting of those models to ModelSim. However,
ModelSim does not match Verilog-XL event ordering in all cases, and if a model ported to
ModelSim does not behave as expected, then you should suspect that there are event order
dependencies.
Sim SE User’s Manual

Simulating Verilog designs UM-135
ModelSim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the vlog command (CR-358) for descriptions of -compat and -keep_delta.

Hazard detection

The -hazard argument to vsim (CR-373) detects event order hazards involving simultaneous
reading and writing of the same register in concurrently executing processes. vsim detects
the following kinds of hazards:

• WRITE/WRITE:
Two processes writing to the same variable at the same time.

• READ/WRITE:
One process reading a variable at the same time it is being written to by another process.
ModelSim calls this a READ/WRITE hazard if it executed the read first.

• WRITE/READ:
Same as a READ/WRITE hazard except that ModelSim executed the write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable
and the two processes involved. You can have the simulator break on the statement where
the hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog (CR-358) with the -hazards argument
when you compile your source code and you must also invoke vsim with the -hazards
argument when you simulate.

Limitations of hazard detection

• Reads and writes involving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects is too
high.

• A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

• A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

• Glitches on nets caused by non-guaranteed event ordering are not detected.

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
ModelSim SE User’s Manual

UM-136 5 - Verilog simulation

Model
Negative timing check limits

Verilog supports negative limit values in the $setuphold and $recrem system tasks. These
tasks have optional delayed versions of input signals to insure proper evaluation of models
with negative timing check limits. Delay values for these delayed nets are determined by
the simulator so that valid data is available for evaluation before a clocking signal.

Example

$setuphold(posedge clk, negedge d, 5, -3, Notifier,,, clk_dly, d_dly);

ModelSim calculates the delay for signal d_dly as 4 time units instead of 3. It does this to
prevent d_dly and clk_dly from occurring simultaneously when a violation isn’t reported.

ModelSim accepts negative limit checks by default, unlike current versions of Verilog-XL.
To match Verilog-XL default behavior (i.e., zeroing all negative timing check limits), use
the +no_neg_tcheck argument to vsim (CR-373).

Negative timing constraint algorithm

The algorithm ModelSim uses to calculate delays for delayed nets isn’t described in IEEE
Std 1364. Rather, ModelSim matches Verilog-XL behavior. The algorithm attempts to find
a set of delays so the data net is valid when the clock net transitions and the timing checks
are satisfied. The algorithm is iterative because a set of delays can be selected that satisfies
all timing checks for a pair of inputs but then causes mis-ordering of another pair (where
both pairs of inputs share a common input). When a set of delays that satisfies all timing
checks is found, the delays are said to converge.

Verilog-XL compatible simulator arguments

The simulator arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to ModelSim. See the vsim command (CR-373) for a description
of each argument.

+alt_path_delays
-l <filename>
+maxdelays
+mindelays
+multisource_int_delays
+no_cancelled_e_msg
+no_neg_tchk
+no_notifier
+no_path_edge
+no_pulse_msg
-no_risefall_delaynets
+no_show_cancelled_e
+nosdfwarn
+nowarn<mnemonic>
+ntc_warn
+pulse_e/<percent>
+pulse_e_style_ondetect

3

clk

d violation 5
region

0

Sim SE User’s Manual

Simulating Verilog designs UM-137
+pulse_e_style_onevent
+pulse_int_e/<percent>
+pulse_int_r/<percent>
+pulse_r/<percent>
+sdf_nocheck_celltype
+sdf_verbose
+show_cancelled_e
+transport_int_delays
+transport_path_delays
+typdelays
ModelSim SE User’s Manual

UM-138 5 - Verilog simulation

Model
Simulating with an elaboration file

Overview

The ModelSim compiler generates a library format that is compatible across platforms.
This means the simulator can load your design on any supported platform without having
to recompile first. Though this architecture offers a benefit, it also comes with a possible
detriment: the simulator has to generate platform-specific code every time you load your
design. This impacts the speed with which the design is loaded.

Starting with ModelSim version 5.6, you can generate a loadable image (elaboration file)
which can be simulated repeatedly. On subsequent simulations, you load the elaboration
file rather than loading the design "from scratch." Elaboration files load quickly.

Why an elaboration file?

In many cases design loading time is not that important. For example, if you’re doing
"iterative design," where you simulate the design, modify the source, recompile and
resimulate, the load time is just a small part of the overall flow. However, if your design is
locked down and only the test vectors are modified between runs, loading time may
materially impact overall simulation time, particularly for large designs loading SDF files.

Another reason to use elaboration files is for benchmarking purposes. Other simulator
vendors use elaboration files, and they distinguish between elaboration and run times. If
you are benchmarking ModelSim against another simulator that uses elaboration, make
sure you use an elaboration file with ModelSim as well so you’re comparing like to like.

One caveat with elaboration files is that they must be created and used in the same
environment. The same environment means the same hardware platform, the same OS and
patch version, and the same version of any PLI/FLI code loaded in the simulation.

Elaboration file flow

We recommend the following flow to maximize the benefit of simulating elaboration files.

1 If timing for your design is fixed, include all timing data when you create the elaboration
file (using the -sdf<type> instance=<filename> argument). If your timing is not fixed
in a Verilog design, you’ll have to use $sdf_annotate system tasks. Note that use of
$sdf_annotate causes timing to be applied after elaboration.

2 Apply all normal vsim arguments when you create the elaboration file. Some arguments
(primarily related to stimulus) may be superseded later during loading of the elaboration
file (see "Modifying stimulus" (UM-140) below).

3 Load the elaboration file along with any arguments that modify the stimulus (see below).
Sim SE User’s Manual

Simulating with an elaboration file UM-139
Creating an elaboration file

Elaboration file creation is performed with the same vsim settings or switches as a normal
simulation plus an elaboration specific argument. The simulation settings are stored in the
elaboration file and dictate subsequent simulation behavior. Some of these simulation
settings can be modified at elaboration file load time, as detailed below.

To create an elaboration file, use the -elab <filename> or -elab_cont <filename>
argument to vsim (CR-373).

The -elab_cont argument is used to create the elaboration file then continue with the
simulation after the elaboration file is created. You can use the -c switch with -elab_cont
to continue the simulation in command-line mode.

Loading an elaboration file

To load an elaboration file, use the -load_elab <filename> argument to vsim (CR-373). By
default the elaboration file will load in command-line mode or interactive mode depending
on the argument (-c or -i) used during elaboration file creation. If no argument was used
during creation, the -load_elab argument will default to the interactive mode.

The vsim arguments listed below can be used with -load_elab to affect the simulation.

+<plus_args>
-c or -i
-do <do_file>
-vcdread <filename>
-vcdstim <filename>
-filemap_elab <HDLfilename>=<NEWfilename>
-l <log_file>
-trace_foreign <level>
-quiet
-wlf <filename>

Modification of an argument that was specified at elaboration file creation, in most cases,
causes the previous value to be replaced with the new value. Usage of the -quiet argument
at elaboration load causes the mode to be toggled from its elaboration creation setting.

All other vsim arguments must be specified when you create the elaboration file, and they
cannot be used when you load the elaboration file.

Important: Elaboration files can be created in command-line mode only. You cannot
create an elaboration file while running the ModelSim GUI.

Important: The elaboration file must be loaded under the same environment in which it
was created. The same environment means the same hardware platform, the same OS
and patch version, and the same version of any PLI/FLI code loaded in the simulation.
ModelSim SE User’s Manual

UM-140 5 - Verilog simulation

Model
Modifying stimulus

A primary use of elaboration files is repeatedly simulating the same design with different
stimulus. The following mechanisms allow you to modify stimulus for each run.

• Use of the change command to modify parameters or generic values. This affects values
only; it has no effect on triggers, compiler directives, or generate statements that
reference either a generic or parameter.

• Use of the -filemap_elab <HDLfilename>=<NEWfilename> argument to establish a
map between files named in the elaboration file. The <HDLfilename> file name, if it
appears in the design as a file name (for example, a VHDL FILE object as well as some
Verilog sysfuncs that take file names), is substituted with the <NEWfilename> file
name. This mapping occurs before environment variable expansion and can’t be used to
redirect stdin/stdout.

• VCD stimulus files can be specified when you load the elaboration file. Both vcdread and
vcdstim are supported. Specifying a different VCD file when you load the elaboration file
supersedes a stimulus file you specify when you create the elaboration file.

• In Verilog, the use of +args which are readable by the PLI routine mc_scan_plusargs().
+args values specified when you create the elaboration file are superseded by +args
values specified when you load the elaboration file.

Using with the PLI or FLI

PLI models do not require special code to function with an elaboration file as long as the
model doesn't create simulation objects in its standard tf routines. The sizetf, misctf and
checktf calls that occur during elaboration are played back at -load_elab to ensure the PLI
model is in the correct simulation state. Registered user tf routines called from the Verilog
HDL will not occur until -load_elab is complete and the PLI model's state is restored.

By default, FLI models are activated for checkpoint during elaboration file creation and are
activated for restore during elaboration file load. (See the "Using checkpoint/restore with
the FLI" section of the FLI Reference manual for more information.) FLI models that
support checkpoint/restore will function correctly with elaboration files.

FLI models that don't support checkpoint/restore may work if simulated with the
-elab_defer_fli argument. When used in tandem with -elab, -elab_defer_fli defers calls to
the FLI model's initialization function until elaboration file load time. Deferring FLI
initialization skips the FLI checkpoint/restore activity (callbacks, mti_IsRestore(), ...) and
may allow these models to simulate correctly. However, deferring FLI initialization also
causes FLI models in the design to be initialized in order with the entire design loaded. FLI
models that are sensitive to this ordering may still not work correctly even if you use
-elab_defer_fli.

Syntax

See the vsim command (CR-373) for details on -elab, -elab_cont, -elab_defer_fli,
-compress_elab, -filemap_elab, and -load_elab.
Sim SE User’s Manual

Simulating with an elaboration file UM-141
Example

Upon first simulating the design, use vsim -elab <filename>
<library_name.design_unit> to create an elaboration file that will be used in subsequent
simulations.

In subsequent simulations you simply load the elaboration file (rather than the design) with
vsim -load_elab <filename>.

To change the stimulus without recoding, recompiling, and reloading the entire design,
Modelsim allows you to map the stimulus file (or files) of the original design unit to an
alternate file (or files) with the -filemap_elab switch. For example, the VHDL code for
initiating stimulus might be:

FILE vector_file : text IS IN "vectors";

where vectors is the stimulus file.

If the alternate stimulus file is named, say, alt_vectors, then the correct syntax for changing
the stimulus without recoding, recompiling, and reloading the entire design is as follows:

vsim -load_elab <filename> -filemap_elab vectors=alt_vectors
ModelSim SE User’s Manual

UM-142 5 - Verilog simulation

Model
Checkpointing and restoring simulations

The checkpoint (CR-93) and restore (CR-248) commands allow you to save and restore the
simulation state within the same invocation of vsim or between vsim sessions.

Checkpoint file contents

The following things are saved with checkpoint and restored with the restore command:

• simulation kernel state

• vsim.wlf file

• signals listed in the List and Wave windows

• file pointer positions for files opened under VHDL

• file pointer positions for files opened by the Verilog $fopen system task

• state of foreign architectures

• state of PLI/VPI code

Checkpoint exclusions

You cannot checkpoint/restore the following:

• state of macros

• changes made with the command-line interface (such as user-defined Tcl commands)

• state of graphical user interface windows

• toggle statistics

If you use the foreign interface, you will need to add additional function calls in order to
use checkpoint/restore. See the FLI Reference Manual or Appendix D - Verilog PLI / VPI
/ DPI for more information.

Action Definition Command used

checkpoint saves the simulation state checkpoint <filename>

"warm" restore restores a checkpoint file saved in a
current vsim session

restore <filename>

"cold" restore restores a checkpoint file saved in a
previous vsim session (i.e., after
quitting ModelSim)

vsim -restore <filename>
Sim SE User’s Manual

Checkpointing and restoring simulations UM-143
Controlling checkpoint file compression

The checkpoint file is normally compressed. To turn off the compression, use the following
command:

set CheckpointCompressMode 0

To turn compression back on, use this command:

set CheckpointCompressMode 1

You can also control checkpoint compression using the modelsim.ini file in the [vsim]
section (use the same 0 or 1 switch):

[vsim]
CheckpointCompressMode = <switch>

The difference between checkpoint/restore and restart

The restart (CR-246) command resets the simulator to time zero, clears out any logged
waveforms, and closes any files opened under VHDL and the Verilog $fopen system task.
You can get the same effect by first doing a checkpoint at time zero and later doing a
restore. Using restart, however, is likely to be faster and you don't have to save the
checkpoint. To set the simulation state to anything other than time zero, you need to use
checkpoint/restore.

Using macros with restart and checkpoint/restore

The restart (CR-246) command resets and restarts the simulation kernel, and zeros out any
user-defined commands, but it does not touch the state of the macro interpreter. This lets
you do restart commands within macros.

The pause mode indicates that a macro has been interrupted. That condition will not be
affected by a restart, and if the restart is done with an interrupted macro, the macro will still
be interrupted after the restart.

The situation is similar for using checkpoint/restore without quitting ModelSim; that is,
doing a checkpoint (CR-93) and later in the same session doing a restore (CR-248) of the
earlier checkpoint. The restore does not touch the state of the macro interpreter so you may
also do checkpoint and restore commands within macros.
ModelSim SE User’s Manual

UM-144 5 - Verilog simulation

Model
Cell libraries

Model Technology passed the ASIC Council’s Verilog test suite and achieved the "Library
Tested and Approved" designation from Si2 Labs. This test suite is designed to ensure
Verilog timing accuracy and functionality and is the first significant hurdle to complete on
the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors’ Verilog cell libraries are compatible with ModelSim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the IEEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. ModelSim Verilog
fully implements specify blocks and timing constraints as defined in IEEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

ModelSim Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 18 - Standard Delay Format (SDF) Timing Annotation for details.

Delay modes

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delays interact to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

module and2(y, a, b);
input a, b;
output y;

and(y, a, b);

specify
(a => y) = 5;
(b => y) = 5;

endspecify
endmodule

In the above two-input "and" gate cell, the distributed delay for the "and" primitive is zero,
and the actual delays observed on the module ports are taken from the path delays. This is
typical for most cells, but a complex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The rule is that if a module contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). This is the default behavior, but you can specify alternate delay
modes with compiler directives and arguments. These arguments and directives are
compatible with Verilog-XL. Compiler delay mode arguments take precedence over delay
mode directives in the source code.
Sim SE User’s Manual

Cell libraries UM-145
Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode_distributed compiler argument or
the `delay_mode_distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler argument or the
`delay_mode_path compiler directive.

Unit delay mode

In unit delay mode the non-zero distributed delays are set to one unit of simulation
resolution (determined by the minimum time_precision argument in all ‘timescale
directives in your design or the value specified with the -t argument to vsim), and the
specify path delays and timing constraints are ignored. Select this delay mode with the
+delay_mode_unit compiler argument or the `delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_zero
compiler argument or the `delay_mode_zero compiler directive.
ModelSim SE User’s Manual

UM-146 5 - Verilog simulation

Model
System tasks and functions

The IEEE Std 1364 defines many system tasks and functions as part of the Verilog
language, and ModelSim Verilog supports all of these along with several non-standard
Verilog-XL system tasks. The system tasks and functions listed in this chapter are built into
the simulator, although some designs depend on user-defined system tasks implemented
with the Programming Language Interface (PLI) or Verilog Procedural Interface (VPI). If
the simulator issues warnings regarding undefined system tasks or functions, then it is
likely that these tasks or functions are defined by a PLI/VPI application that must be loaded
by the simulator.

IEEE Std 1364 system tasks and functions

The following system tasks and functions are described in detail in the IEEE Std 1364.

Timescale tasks Simulator
control tasks

Simulation time
functions

Command line
input

$printtimescale $finish $realtime $test$plusargs

$timeformat $stop $stime $value$plusargs

$time

Probabilistic
distribution
functions

Conversion
functions

Stochastic
analysis tasks

Timing check
tasks

$dist_chi_square $bitstoreal $q_add $hold

$dist_erlang $itor $q_exam $nochange

$dist_exponential $realtobits $q_full $period

$dist_normal $rtoi $q_initialize $recovery

$dist_poisson $signed $q_remove $setup

$dist_t $unsigned $setuphold

$dist_uniform $skew

$random $widtha

$removal

$recrem
Sim SE User’s Manual

System tasks and functions UM-147
a.Verilog-XL ignores the threshold argument even though it is part of the Verilog
spec. ModelSim does not ignore this argument. Be careful that you don’t set the
threshold argument greater-than-or-equal to the limit argument as that essentially dis-
ables the $width check. Note too that you cannot override the threshold argument via
SDF annotation.
ModelSim SE User’s Manual

UM-148 5 - Verilog simulation

Model
Display tasks PLA modeling tasks Value change dump (VCD)
file tasks

$display $async$and$array $dumpall

$displayb $async$nand$array $dumpfile

$displayh $async$or$array $dumpflush

$displayo $async$nor$array $dumplimit

$monitor $async$and$plane $dumpoff

$monitorb $async$nand$plane $dumpon

$monitorh $async$or$plane $dumpvars

$monitoro $async$nor$plane $dumpportson

$monitoroff $sync$and$array $dumpportsoff

$monitoron $sync$nand$array $dumpportsall

$strobe $sync$or$array $dumpportsflush

$strobeb $sync$nor$array $dumpports

$strobeh $sync$and$plane $dumpportslimit

$strobeo $sync$nand$plane

$write $sync$or$plane

$writeb $sync$nor$plane

$writeh

$writeo
Sim SE User’s Manual

System tasks and functions UM-149
File I/O tasks

$fclose $fopen $fwriteh

$fdisplay $fread $fwriteo

$fdisplayb $fscanf $readmemb

$fdisplayh $fseek $readmemh

$fdisplayo $fstrobe $rewind

$ferror $fstrobeb $sdf_annotate

$fflush $fstrobeh $sformat

$fgetc $fstrobeo $sscanf

$fgets $ftell $swrite

$fmonitor $fwrite $swriteb

$fmonitorb $fwriteb $swriteh

$fmonitorh $swriteo

$fmonitoro $ungetc
ModelSim SE User’s Manual

UM-150 5 - Verilog simulation

Model
Verilog-XL compatible system tasks and functions

The following system tasks and functions are provided for compatibility with Verilog-XL.
Although they are not part of the IEEE standard, they are described in an annex of the IEEE
Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

The following system tasks and functions are also provided for compatibility with Verilog-
XL; they are not described in the IEEE Std 1364.

$deposit(variable, value);

This system task sets a Verilog register or net to the specified value. variable is the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim
force -deposit command.

$disable_warnings(“<keyword>”[,<module_instance>...]);

This system task instructs ModelSim to disable warnings about timing check violations
or triregs that acquire a value of ‘X’ due to charge decay. <keyword> may be decay or
timing. You can specify one or more module instance names. If you don’t specify a
module instance, ModelSim disables warnings for the entire simulation.

$enable_warnings(“<keyword>”[,<module_instance>...]);

This system task enables warnings about timing check violations or triregs that acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. You can specify
one or more module instance names. If you don’t specify a module_instance, ModelSim
enables warnings for the entire simulation.

$system("<operating system shell command>");

This system task executes the specified operating system shell command and displays the
result. For example, to list the contents of the working directory on Unix:

$system("ls");

The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, as in Verilog-XL.

$recovery(reference event, data_event, removal_limit, recovery_limit,
[notifier], [tstamp_cond], [tcheck_cond], [delayed_reference],
[delayed_data])

The $recovery system task normally takes a recovery_limit as the third argument and an
optional notifier as the fourth argument. By specifying a limit for both the third and
fourth arguments, the $recovery timing check is transformed into a combination removal
and recovery timing check similar to the $recrem timing check. The only difference is
that the removal_limit and recovery_limit are swapped.

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier],
[tstamp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.
Sim SE User’s Manual

System tasks and functions UM-151
The tcheck_cond argument conditions the data_event for the hold check and the
clk_event for the setup check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model's logic should reference
the delayed_clk and delayed_data nets in place of the normal clk and data nets. This
ensures that the correct data is latched in the presence of negative constraints. The
simulator automatically calculates the delays for delayed_clk and delayed_data such that
the correct data is latched as long as a timing constraint has not been violated. See
"Negative timing check limits" (UM-136) for more details.

The following system tasks are Verilog-XL system tasks that are not implemented in
ModelSim Verilog, but have equivalent simulator commands.

$input("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the structure pane of the Workspace.
The corresponding source code is displayed in a Source window.

$reset

This system task resets the simulation back to its time 0 state. The equivalent simulator
command is restart.

$restart("filename")

This system task sets the simulation to the state specified by filename, saved in a previous
call to $save. The equivalent simulator command is restore <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays a list of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showvars

This system task displays a list of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.
ModelSim SE User’s Manual

UM-152 5 - Verilog simulation

Model
ModelSim Verilog system tasks and functions

The following system tasks and functions are specific to ModelSim. They are not included
in the IEEE Std 1364 nor are they likely supported in other simulators. Their use may limit
the portability of your code.

$coverage_save(<filename>, [<instancepath>], [<xml_output>])

The $coverage_save() system function saves Code Coverage information to a file during
a batch run that typically would terminate via the $finish call. It also returns a “1” to
indicate that the coverage information was saved successfully or a “0” to indicate an error
(unable to open file, instance name not found, etc.)

If you don’t specify <instancepath>, ModelSim saves all coverage data in the current
design to the specified file. If you do specify <instancepath>, ModelSim saves data on
that instance, and all instances below it (recursively), to the specified file.

If set to 1, the [<xml_output>] argument specifies that the output be saved in XML
format.

See Chapter 13 - Measuring code coverage for more information on Code Coverage.

$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
onto an existing VHDL signal or Verilog net. This allows you to drive signals or nets at
any level of the design hierarchy from within a Verilog module (e.g., a testbench). See
$init_signal_driver (UM-429) in Chapter 17 - Signal Spy for complete details.

$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog
register/net onto an existing Verilog register or VHDL signal. This system task allows
you to reference signals, registers, or nets at any level of hierarchy from within a Verilog
module (e.g., a testbench). See $init_signal_spy (UM-432) in Chapter 17 - Signal Spy for
complete details.

$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register or net. This allows you to force signals, registers, or nets at any level
of the design hierarchy from within a Verilog module (e.g., a testbench). A $signal_force
works the same as the force command (CR-180) with the exception that you cannot issue
a repeating force. See $signal_force (UM-434) in Chapter 17 - Signal Spy for complete
details.

$signal_release

The $signal_release() system task releases a value that had previously been forced onto
an existing VHDL signal or Verilog register or net. A $signal_release works the same as
the noforce command (CR-208). See $signal_release (UM-436) in Chapter 17 - Signal Spy.

$sdf_done

This task is a "cleanup" function that removes internal buffers, called MIPDs, that have
a delay value of zero. These MIPDs are inserted in response to the -v2k_int_delay
argument to the vsim command (CR-373). In general the simulator will automatically
remove all zero delay MIPDs. However, if you have $sdf_annotate() calls in your design
that are not getting executed, the zero-delay MIPDs are not removed. Adding the
$sdf_done task after your last $sdf_annotate() will remove any zero-delay MIPDs that
have been created.
Sim SE User’s Manual

Compiler directives UM-153
Compiler directives

ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364,
some Verilog-XL compiler directives, and some that are proprietary.

Many of the compiler directives (such as `timescale) take effect at the point they are
defined in the source code and stay in effect until the directive is redefined or until it is reset
to its default by a `resetall directive. The effect of compiler directives spans source files,
so the order of source files on the compilation command line could be significant. For
example, if you have a file that defines some common macros for the entire design, then
you might need to place it first in the list of files to be compiled.

The `resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

`celldefine
‘default_decay_time
`default_nettype
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`protected
`timescale
`unconnected_drive
`uselib

ModelSim Verilog implicitly defines the following macro:

`define MODEL_TECH

IEEE Std 1364 compiler directives

The following compiler directives are described in detail in the IEEE Std 1364.

`celldefine
`default_nettype
`define
`else
`elsif
`endcelldefine
`endif
`ifdef
‘ifndef
`include
‘line
`nounconnected_drive
`resetall
`timescale
`unconnected_drive
`undef
ModelSim SE User’s Manual

UM-154 5 - Verilog simulation

Model
Verilog-XL compatible compiler directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that do
not explicitly declare a decay time. The decay time can be expressed as a real or integer
number, or as "infinite" to specify that the charge never decays.

`delay_mode_distributed

This directive disables path delays in favor of distributed delays. See "Delay modes" (UM-

144) for details.

`delay_mode_path

This directive sets distributed delays to zero in favor of path delays. See "Delay modes"
(UM-144) for details.

`delay_mode_unit

This directive sets path delays to zero and non-zero distributed delays to one time unit.
See "Delay modes" (UM-144) for details.

`delay_mode_zero

This directive sets path delays and distributed delays to zero. See "Delay modes" (UM-

144) for details.

`uselib

This directive is an alternative to the -v, -y, and +libext source library compiler
arguments. See "Verilog-XL `uselib compiler directive" (UM-120) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of these directives are irrelevant to ModelSim Verilog, but may appear in code being
ported from Verilog-XL.

`accelerate
`autoexpand_vectornets
`disable_portfaults
`enable_portfaults
`expand_vectornets
`noaccelerate
`noexpand_vectornets
`noremove_gatenames
`noremove_netnames
`nosuppress_faults
`remove_gatenames
`remove_netnames
`suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in ModelSim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

`default_trireg_strength
`signed
`unsigned
Sim SE User’s Manual

Compiler directives UM-155
ModelSim compiler directives

The following directives are specific to ModelSim and are not compatible with other
simulators (see note below).

‘protect ... ‘endprotect

This directive pair allows you to encrypt selected regions of your source code. The code
in `protect regions has all debug information stripped out. This behaves exactly as if
using the -nodebug argument except that it applies to selected regions of code rather than
the whole file. This enables usage scenarios such as making module ports, parameters,
and specify blocks publicly visible while keeping the implementation private.

The ̀ protect directive is ignored by default unless you use the +protect argument to vlog
(CR-358). Once compiled, the original source file is copied to a new file in the current
work directory. The name of the new file is the same as the original file with a "p"
appended to the suffix. For example, "top.v" is copied to "top.vp". This new file can be
delivered and used as a replacement for the original source file.

The +protect argument is not required when compiling .vp files because the `protect
directives are converted to ̀ protected directives which are processed even if +protect is
omitted.

`protect and `protected directives cannot be nested.

If any ̀ include directives occur within a protected region, the compiler generates a copy
of the include file with a ".vp" suffix and protects the entire contents of the include file.

If errors are detected in a protected region, the error message always reports the first line
of the protected block.

The $sdf_annotate() system task cannot be used to SDF-annotate code bracketed by
`protect..`endprotect.

Though other simulators have a ̀ protect directive, the algorithm ModelSim uses to encrypt
source files is different. Hence, even though an uncompiled source file with `protect is
compatible with another simulator, once the source is compiled in ModelSim, you could
not simulate it elsewhere.
ModelSim SE User’s Manual

UM-156 5 - Verilog simulation

Model
Sparse memory modeling

Sparse memories are a mechanism for allocating storage for memory elements only when
they are needed. You mark which memories should be treated as sparse, and ModelSim
dynamically allocates memory for the accessed addresses during simulation.

Sparse memories are more efficient in terms of memory consumption, but access times to
sparse memory elements during simulation are slower. Thus, sparse memory modeling
should be used only on memories whose active addresses are "few and far between."

There are two methods of enabling sparse memories:

• “Manually” by inserting attributes or meta-comments in your code

• Automatically by setting the SparseMemThreshhold (UM-526) variable in the
modelsim.ini file

Manually marking sparse memories

You can mark memories in your code as sparse using either the mti_sparse attribute or the
sparse meta-comment. For example:

(* mti_sparse *) reg mem [0:1023]; // Using attribute

reg /*sparse*/ [0:7] mem [0:1023]; // Using meta-comment

The meta-comment syntax is supported for compatibility with other simulators.

Automatically enabling sparse memories

Using the SparseMemThreshhold (UM-526) .ini variable, you can instruct ModelSim to
mark as sparse any memory that is a certain size. Consider this example:

If SparseMemThreshold = 2048 then

reg mem[0:2047]; // will be marked as sparse automatically

reg mem[0:2046]; // will not be marked as sparse

Combining automatic and manual modes

Because mti_sparse is a Verilog 2001 attribute that accepts values, you can enable
automatic sparse memory modeling but still control individual memories within your code.
Consider this example:

If SparseMemThreshold = 2048 then

reg mem[0:2047]; // will be marked as sparse automatically

reg mem[0:2046]; // will not be marked as sparse

However, you can override this automatic behavior using mti_sparse with a value:

(* mti_sparse = 0 *) reg mem[0:2047]; // will *not* be marked as sparse even
though SparseMemThreshold = 2048

(* mti_sparse = 1*) reg mem[0:2046]; // will be marked as sparse even though
SparseMemThreshold = 2048
Sim SE User’s Manual

Sparse memory modeling UM-157
Determining which memories were implemented as sparse

To identify which memories were implemented as sparse, use this command:

write report -l

The write report command (CR-426) lists summary information about the design, including
sparse memory handling. You would issue this command if you aren’t certain whether a
memory was successfully implemented as sparse or not. For example, you might add a /
sparse/ metacomment above a multi-D SystemVerilog memory, which we don't
support. In that case, the simulation will function correctly, but ModelSim will use a non-
sparse implementation of the memory.

Limitations

There are certain limitations that exist with sparse memories:

• Sparse memories can have only one packed dimension. For example:

reg [0:3] [2:3] mem [0:1023]

has two packed dimensions and cannot be marked as sparse.

• Sparse memories can have only one unpacked dimension. For example:

reg [0:1] mem [0:1][0:1023]

has two unpacked dimensions and cannot be marked as sparse.

• Dynamic and associative arrays cannot be marked as sparse.

• Memories defined within a structure cannot be marked as sparse.

• PLI functions that get the pointer to the value of a memory will not work with sparse
memories. For example, using the tf_nodeinfo() function to implement $fread or $fwrite
will not work, because ModelSim returns a NULL pointer for tf_nodeinfo() in the case
of sparse memories.

• Memories that have parameterized dimensions like the following example:

parameter MYDEPTH = 2048;
reg [31:0] mem [0:MYDEPTH-1];

cannot be processed as a sparse memory unless the design has been optimized with the
vopt command (CR-371). In optimized designs, the memory will be implemented as a
sparse memory, and all parameter overrides to that MYDEPTH parameter will be treated
correctly.
ModelSim SE User’s Manual

UM-158 5 - Verilog simulation

Model
Verilog PLI/VPI and SystemVerilog DPI

ModelSim supports the use of the Verilog PLI (Programming Language Interface) and VPI
(Verilog Procedural Interface) and the SystemVerilog DPI (Direct Programming
Interface). These three interfaces provide a mechanism for defining tasks and functions that
communicate with the simulator through a C procedural interface. For more information on
the ModelSim implementation, see Appendix D - Verilog PLI / VPI / DPI.
Sim SE User’s Manual

 UM-159
6 - SystemC simulation

Chapter contents
Introduction UM-160

Supported platforms and compiler versions UM-161
Building gcc with custom configuration options UM-161
HP Limitations for SystemC UM-162

Usage flow for SystemC-only designs UM-163

Compiling SystemC files UM-164
Creating a design library UM-164
Modifying SystemC source code UM-164
Invoking the SystemC compiler UM-167
Compiling optimized and/or debug code UM-167
Specifying an alternate g++ installation UM-168
Maintaining portability between OSCI and ModelSim . . . UM-168
Restrictions on compiling with HP aCC UM-169
Switching platforms and compilation UM-169
Using sccom vs. raw C++ compiler UM-170

Linking the compiled source UM-164
sccom -link UM-172

Simulating SystemC designs UM-173
Running simulation UM-173

Debugging the design UM-176
Viewable SystemC objects UM-176
Source-level debug UM-178

SystemC object and type display in ModelSim UM-176
Support for aggregates UM-180
Viewing FIFOs UM-181

Differences between ModelSim and the OSCI simulator UM-182
Fixed point types UM-182
OSCI 2.1 features supported UM-183

Troubleshooting SystemC errors UM-184
Errors during loading UM-184

Note: The functionality described in this chapter requires a systemc license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.
ModelSim SE User’s Manual

UM-160 6 - SystemC simulation

Model
Introduction

This chapter describes how to compile and simulate SystemC designs with ModelSim.
ModelSim implements the SystemC language based on the Open SystemC Initiative
(OSCI) SystemC 2.0.1 reference simulator. It is recommended that you obtain the OSCI
functional specification, or the latest version of the SystemC Language Reference Manual
as a reference manual. Visit http://www.systemc.org for details.

In addition to the functionality described in the OSCI specification, ModelSim for SystemC
includes the following features:

• Single common Graphic Interface for SystemC and HDL languages.

• Extensive support for mixing SystemC, VHDL, and Verilog in the same design (SDF
annotation for HDL only). For detailed information on mixing SystemC with HDL see
Chapter 7 - Mixed-language simulation.
Sim SE User’s Manual

Supported platforms and compiler versions UM-161
Supported platforms and compiler versions

SystemC runs on a subset of ModelSim supported platforms. The table below shows the
currently supported platforms and compiler versions:

Building gcc with custom configuration options

We only test with our default options. If you use advanced gcc configuration options, we
cannot guarantee that ModelSim will work with those options.

To use a custom gcc build, set the CppPath variable in the modelsim.ini file. This variable
specifies the pathname to the compiler binary you intend to use.

When using a custom gcc, ModelSim requires that the custom gcc be built with several
specific configuration options. These vary on a per-platform basis as shown in the
following table:

Platform Supported compiler versions

HP-UX 11.0 or later aCC 3.45 with associated patches

RedHat Linux 7.2 and 7.3
RedHat Linux Enterprise version 2.1

gcc 3.2.3

SunOS 5.6 or later gcc 3.2

Windows NT and other NT-based
platforms (win2K, XP, etc.)

Minimalist GNU for Windows
(MinGW) gcc 3.2.3

Important: ModelSim SystemC has been tested with the gcc versions available from
ftp.model.com/pub/gcc. Customized versions of gcc may cause problems. We strongly
encourage you to download and use the gcc versions available on our FTP site (login as
anonymous).

Platform Mandatory configuration options

Linux none

Solaris --with-gnu-ld --with-ld=/path/to/binutils-2.14/bin/ld --with-gnu-as
--with-as=/path/to/binutils-2.14/bin/as

HP-UX N/A

Win32 (MinGW) --with-gnu-ld --with-gnu-as
Do NOT build with the --enable-sjlj-exceptions option, as it can cause
problems with catching exceptions thrown from SC_THREAD and
SC_CTHREAD

ld.exe and as.exe should be installed into the <install_dir>/bin before
building gcc. ld and as are available in the binutils package. Modelsim
uses binutils 2.13.90-20021006-2.
ModelSim SE User’s Manual

UM-162 6 - SystemC simulation

Model
If you don't have a GNU binutils2.14 assembler and linker handy, you can use the as and
ld programs distributed with ModelSim. They are located inside the built-in gcc in directory
<install_dir>/modeltech/gcc-3.2-<mtiplatform>/lib/gcc-lib/<gnuplatform>/3.2.

By default ModelSim also uses the following options when configuring built-in gcc.

• --disable-nls

• --enable-languages=c,c++

These are not mandatory, but they do reduce the size of the gcc installation.

HP Limitations for SystemC

HP is supported for SystemC with the following limitations:

• variables are not supported

• aggregates are not supported

• objects must be explicitly named, using the same name as their object, in order to debug

SystemC simulation objects such as modules, primitive channels, and ports can be
explicitly named by passing a name to the constructors of said objects. If an object is not
constructed with an explicit name, then the OSCI reference simulator generates an internal
name for it, using names such as "signal_0", "signal_1", etc.

Required Patch for HP-UX 11.11

If you are running on HP-UX 11.11, you must have the following patch installed:

B.11.11.0306 Gold Base Patches for HP-UX 11i, June 2003.
Sim SE User’s Manual

Usage flow for SystemC-only designs UM-163
Usage flow for SystemC-only designs

ModelSim allows users to simulate SystemC, either alone or in combination with other
VHDL/Verilog modules. The following is an overview of the usage flow for strictly
SystemC designs. More detailed instructions are presented in the sections that follow.

1 Create and map the working design library with the vlib and vmap statements, as
appropriate to your needs.

2 Modify the SystemC source code, including the following highlights:

• Replace sc_main() with an SC_MODULE, and potentially add a process to contain
any testbench code

• Replace sc_start() by using the run (CR-252) command in the GUI

• Remove calls to sc_initialize()

• Export the top level SystemC design unit(s) using the SC_MODULE_EXPORT
macro

See "Modifying SystemC source code" (UM-164) for a complete list of all modifications.

3 Analyze the SystemC source using sccom (CR-254). sccom invokes the native C++
compiler to create the C++ object files in the design library.

See "Using sccom vs. raw C++ compiler" (UM-170) for information on when you are
required to use sccom vs. another C++ compiler.

4 Perform a final link of the C++ source using sccom -link (UM-172). This process creates
a shared object file in the current work library which will be loaded by vsim at runtime.
sccom -link must be re-run before simulation if any new sccom compiles were
performed.

5 Simulate the design using the standard vsim command.

6 Simulate the design using the run command, entered at the vsim command prompt.

7 Debug the design using ModelSim GUI features, including the Source and Wave
windows.
ModelSim SE User’s Manual

UM-164 6 - SystemC simulation

Model
Compiling SystemC files

To compile SystemC designs, you must

• create a design library

• modify the SystemC source code

• run the sccom (CR-254) SystemC compiler

• run the sccom (CR-254) SystemC linker (sccom -link)

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-356) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX commands – always use the
vlib command (CR-356).

See "Design libraries" (UM-57) for additional information on working with libraries.

Modifying SystemC source code

Several modifications must be applied to your original SystemC source code. To see
example code containing the modifications listed below, see "Code modification
examples" (UM-165).

Converting sc_main() to a module

In order for ModelSim to run the SystemC/C++ source code, the control function of
sc_main() must be replaced by a constructor, SC_CTOR(), placed within a module at the
top level of the design (see mytop in "Example 1" (UM-165)). In addition:

• any testbench code inside sc_main() should be moved to a process, normally an
SC_THREAD process.

• all C++ variables in sc_main(), including SystemC primitive channels, ports, and
modules, must be defined as members of sc_module. Therefore, initialization must take
place in the SC_CTOR. For example, all sc_clock() and sc_signal() initializations must
be moved into the constructor.

Replacing the sc_start() function with the run command and options

ModelSim uses the run command and its options in place of the sc_start() function. If
sc_main() has multiple sc_start() calls mixed in with the testbench code, then use an
SC_THREAD() with wait statements to emulate the same behavior. An example of this is
shown below.
Sim SE User’s Manual

Compiling SystemC files UM-165
Removing calls to sc_initialize()

vsim calls sc_initialize() by default at the end of elaboration, so calls to sc_initialize() are
unnecessary.

Exporting all top level SystemC modules

For SystemC designs, you must export all top level modules in your design to ModelSim.
You do this with the SC_MODULE_EXPORT(<sc_module_name>) macro. SystemC
templates are not supported as top level or boundary modules. See "Templatized SystemC
modules" (UM-171). The sc_module_name is the name of the top level module to be
simulated in ModelSim. You must specify this macro in a C++ source (.cpp) file. If the
macro is contained in a header file instead of a C++ source file, an error may result.

For HP-UX: Explicitly naming signals, ports, and modules

Important: Verify that SystemC signals, ports, and modules are explicitly named to avoid
port binding and debugging errors.

Code modification examples

Example 1

The following is a simple example of how to convert sc_main to a module and elaborate it
with vsim.

The run command equivalent to the sc_start(100, SC_NS) statement is:

run 100 ns

Original OSCI code #1 (partial) Modified code #1 (partial)

int sc_main(int argc, char* argv[])

{

 sc_signal<bool> mysig;

 mymod mod("mod");

 mod.outp(mysig);

 sc_start(100, SC_NS);

}

SC_MODULE(mytop)

{

 sc_signal<bool> mysig;

 mymod mod;

 SC_CTOR(mytop)

 : mysig("mysig"),

 mod("mod")

 {

 mod.outp(mysig);

 }

};

SC_MODULE_EXPORT(mytop);
ModelSim SE User’s Manual

UM-166 6 - SystemC simulation

Model
Example 2

This next example is slightly more complex, illustrating the use of sc_main() and signal
assignments, and how you would get the same behavior using ModelSim.

Original OSCI code #2 (partial) Modified ModelSim code #2 (partial)

int sc_main(int, char**)

{

sc_signal<bool> reset;

counter_top top("top");

sc_clock CLK("CLK", 10, SC_NS, 0.5,

0.0, SC_NS, false);

top.reset(reset);

reset.write(1);

sc_start(5, SC_NS);

reset.write(0);

sc_start(100, SC_NS);

reset.write(1);

sc_start(5, SC_NS);

reset.write(0);

sc_start(100, SC_NS);

}

SC_MODULE(new_top)

{

sc_signal<bool> reset;

counter_top top;

sc_clock CLK;

void sc_main_body();

SC_CTOR(new_top)

: reset("reset"),

 top("top")

CLK("CLK", 10, SC_NS, 0.5, 0.0, SC_NS, false)

{

top.reset(reset);

SC_THREAD(sc_main_body);

}

};

void

new_top::sc_main_body()

{

reset.write(1);

wait(5, SC_NS);

reset.write(0);

wait(100, SC_NS);

reset.write(1);

wait(5, SC_NS);

reset.write(0);

wait(100, SC_NS);

}

SC_MODULE_EXPORT(new_top);
Sim SE User’s Manual

Compiling SystemC files UM-167
Example 3

One last example illustrates the correct way to modify a design using an SCV transaction
database. ModelSim requires that the transaction database be created before calling the
constructors on the design subelements. The example is as follows:

Take care to preserve the order of functions called in sc_main() of the original code.

Sub-elements cannot be placed in the initializer list, since the constructor body must be
executed prior to their construction. Therefore, the sub-elements must be made pointer
types, created with "new" in the SC_CTOR() module.

Invoking the SystemC compiler

ModelSim compiles one or more SystemC design units with a single invocation of sccom
(CR-254), the SystemC compiler. The design units are compiled in the order that they appear
on the command line. For SystemC designs, all design units must be compiled just as they
would be for any C++ compilation. An example of an sccom command might be:

sccom -I ../myincludes mytop.cpp mydut.cpp

Compiling optimized and/or debug code
By default, sccom invokes the C++ compiler (g++ or aCC) without any optimizations. If
desired, you can enter any g++/aCC optimization arguments at the sccom command line.

Also, source level debug of SystemC code is not available by default in ModelSim. To
compile your SystemC code for debug, use the g++/aCC -g argument on the sccom
command line.

Original OSCI code # 3 (partial) Modified ModelSim code #3 (partial)

int sc_main(int argc, char* argv[])

{

scv_startup();

scv_tr_text_init();

scv_tr_db db("my_db");

scv_tr_db db::set_default_db(&db);

sc_clock clk ("clk",20,0.5,0,true);

sc_signal<bool> rw;

test t("t");

t.clk(clk);;

t.rw(rw);

sc_start(100);

}

SC_MODULE(top)

{

sc_signal<bool>* rw;

test* t;

SC_CTOR(top)

{

scv_startup();

scv_tr_text_init()

scv_tr_db* db = new scv_tr_db("my_db");

scv_tr_db::set_default_db(db):;

clk = new sc_clock("clk",20,0.5,0,true);

rw = new sc_signal<bool> ("rw");

t = new test("t");

}

};

SC_MODULE_EXPORT(new_top);
ModelSim SE User’s Manual

UM-168 6 - SystemC simulation

Model
Specifying an alternate g++ installation

We recommend using the version of g++ that is shipped with ModelSim on its various
supported platforms. However, if you want to use your own installation, you can do so by
setting the CppPath variable in the modelsim.ini file to the g++ executable location.

For example, if your g++ executable is installed in /u/abc/gcc-3.2/bin, then you would set
the variable as follows:

CppPath /u/abc/gcc-3.2/bin/g++

Maintaining portability between OSCI and ModelSim

If you intend to simulate on both ModelSim and the OSCI reference simulator, you can use
the MTI_SYSTEMC macro to execute the ModelSim specific code in your design only
when running ModelSim. The MTI_SYSTEMC macro is defined in ModelSim’s systemc.h
header file. When you #include this file in your SystemC code, you gain access to this
macro. By including #ifdef/else statements in the code, you can then avoid having two
copies of the design.

Using the original and modified code shown in the example shown on page 165, you might
write the code as follows:

#ifdef MTI_SYSTEMC //If using the ModelSim simulator, sccom compiles this

SC_MODULE(mytop)

{

 sc_signal<bool> mysig;

 mymod mod;

 SC_CTOR(mytop)

 : mysig("mysig"),

 mod("mod")

 {

 mod.outp(mysig);

 }

};

SC_MODULE_EXPORT(top);

#else //Otherwise, it compiles this

int sc_main(int argc, char* argv[])

{

 sc_signal<bool> mysig;

 mymod mod("mod");

 mod.outp(mysig);

 sc_start(100, SC_NS);

}

#endif
Sim SE User’s Manual

Compiling SystemC files UM-169
Restrictions on compiling with HP aCC

ModelSim uses the aCC -AA option by default when compiling C++ files on HP-UX. It
does this so cout will function correctly in the systemc.so file. The -AA option tells aCC to
use ANSI-compliant <iostream> rather than cfront-style <iostream.h>. Thus, all C++-
based objects in a program must be compiled with -AA. This means you must use
<iostream> and "using" clauses in your code. Also, you cannot use the -AP option, which
is incompatible with -AA.

Switching platforms and compilation

Compiled SystemC libraries are platform dependent. If you move between platforms, you
must remove all SystemC files from the working library and then recompile your SystemC
source files. To remove SystemC files from the working directory, use the vdel (CR-327)
command with the -allsystemc argument.

If you attempt to load a design that was compiled on a different platform, an error such as
the following occurs:

vsim work.test_ringbuf
Loading work/systemc.so

** Error: (vsim-3197) Load of "work/systemc.so" failed:
work/systemc.so: ELF file data encoding not little-endian.

** Error: (vsim-3676) Could not load shared library
work/systemc.so for SystemC module 'test_ringbuf'.

Error loading design

You can type verror 3197 at the vsim command prompt and get details about what caused
the error and how to fix it.
ModelSim SE User’s Manual

UM-170 6 - SystemC simulation

Model
Using sccom vs. raw C++ compiler

When compiling complex C/C++ testbench environments, it is common to compile code
with many separate runs of the compiler. Often users compile code into archives (.a files),
and then link the archives at the last minute using the -L and -l link options.

When using ModelSim's SystemC, you may wish to compile a portion of your C design
using raw g++ or aCC instead of sccom. Perhaps you have some legacy code or some non-
SystemC utility code that you want to avoid compiling with sccom. You can do this,
however, some caveats and rules apply.

Rules for sccom use

The rules governing when and how you must use sccom are as follows:

1 You must compile all code that references SystemC types or objects using sccom (CR-

254).

2 When using sccom, you should not use the -I compiler option to point the compiler at
any search directories containing OSCI or any other vendor supplied SystemC header
files. sccom does this for you accurately and automatically.

3 If you do use the raw C++ compiler to compile C/C++ functionality into archives or
shared objects, you must then link your design using the -L and -l options with the sccom
-link command. These options effectively pull the non-SystemC C/C++ code into a
simulation image that is used at runtime.

Failure to follow the above rules can result in link-time or elaboration-time errors due to
mismatches between the OSCI or any other vendor supplied SystemC header files and the
ModelSim SystemC header files.

Rules for using raw g++ to compile non-SystemC C/C++ code

If you use raw g++ to compile your non-systemC C/C++ code, the following rules apply:

1 The -fPIC option to g++ should be used during compilation with sccom.

2 For C++ code, you must use the built-in g++ delivered with ModelSim, or (if using a
custom g++) use the one you built and specified with the CppPath .ini variable.

Otherwise binary incompatibilities may arise between code compiled by sccom and code
compiled by raw g++.

Rules for using raw HP aCC to compile non-SystemC C/C++ code

If you use HP’s aCC compiler to compile your non-systemC C/C++ code, the following
rules apply:

1 For C++ code, you should use the +Z and -AA options during compilation

2 You must use HP aCC version 3.45 or higher.
Sim SE User’s Manual

Compiling SystemC files UM-171
Issues with C++ templates

Templatized SystemC modules

Templatized SystemC modules are not supported for use at:

• the top level of the design

• the boundary between SystemC and higher level HDL modules (i.e. the top level of the
SystemC branch)

To convert a top level templatized SystemC module, you can either specialize the module
to remove the template, or you can create a wrapper module that you can use as the top
module.

For example, let’s say you have a templatized SystemC module as shown below:

template <class T>
class top : public sc_module
{

sc_signal<T> sig1;
.
.
.

};

You can specialize the module by setting T = int, thereby removing the template, as
follows:

class top : public sc_module
{

sc_signal<int> sig 1;
.
.
.

};

Or, alternatively, you could write a wrapper to be used over the template module:

class modelsim_top : public sc_module
{

top<int> actual_top;
.
.
.

};

SC_MODULE_EXPORT(modelsim_top);

Organizing templatized code

Suppose you have a class template, and it contains a certain number of member functions.
All those member functions must be visible to the compiler when it compiles any instance
of the class. For class templates, the C++ compiler generates code for each unique instance
of the class template. Unless it can see the full implementation of the class template, it
cannot generate code for it thus leaving the invisible parts as undefined. Since it is legal to
have undefined symbols in a .so, sccom -link will not produce any errors or warnings. To
make functions visible to the compiler, you must move them to the .h file.
ModelSim SE User’s Manual

UM-172 6 - SystemC simulation

Model
Linking the compiled source

Once the design has been compiled, it must be linked using the sccom (CR-254) command
with the -link argument.

sccom -link

The sccom -link command collects the object files created in the different design libraries,
and uses them to build a shared library (.so) in the current work library or the library
specified by the -work option. If you have changed your SystemC source code and
recompiled it using sccom, then you must relink the design by running sccom -link before
invoking vsim. Otherwise, your changes to the code are not recognized by the simulator.
Remember that any dependent .a or .o files should be listed on the sccom -link command
line before the .a or .o on which it depends. For more details on dependencies and other
syntax issues, see sccom (CR-254).
Sim SE User’s Manual

Simulating SystemC designs UM-173
Simulating SystemC designs

After compiling the SystemC source code, you can simulate your design with vsim (CR-

373).

Loading the design

For SystemC, invoke vsim (CR-373) with the top-level module of the design. This example
invokes vsim (CR-373) on a design named top:

vsim top

When the GUI comes up, you can expand the hierarchy of the design to view the SystemC
modules. SystemC objects are denoted by green icons (see "Design object icons and their
meaning" (GR-12) for more information).

To simulate from a command shell, without the GUI, invoke vsim with the -c option:

vsim -c <top_level_module>

Running simulation

Run the simulation using the run (CR-252) command or select one of the Simulate > Run
options from the menu bar.
ModelSim SE User’s Manual

UM-174 6 - SystemC simulation

Model
Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. You can set
the simulator resolution and user time unit from SystemC source code using the
sc_set_time_resolution() and sc_set_default_time_unit() functions.

If the resolution is not set explicitly by sc_set_time_resolution(), the resolution limit
defaults to the value specified by the Resolution (UM-533) variable in the modelsim.ini file.
You can view the current resolution by invoking the report command (CR-244) with the
simulator state option.

The rules vary if you have mixed-language designs. Please see "Simulator resolution limit"
(UM-191) for details on mixed designs.

Choosing the resolution

Simulator resolution:

You should choose the coarsest simulator resolution limit possible that does not result in
undesired rounding of your delays. However, the time precision should also not be set
unnecessarily small, because in some cases performance will be degraded.

SystemC resolution:

The default resolution for all SystemC modules is 1ps. For all SystemC calls which don’t
explicitly specify units, the resolution is understood to be 1ps. The default is overridden by
specifying units in the call.

Overriding the resolution

You can override ModelSim’s default simulator resolution by specifying the -t option on
the command line or by selecting a different Simulator Resolution in the Simulate dialog
box. Available resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

When deciding what to set the simulator’s resolution to, you must keep in mind the
relationship between the simulator’s resolution and the SystemC time units specified in the
source code. For example, with a time unit usage of:

sc_wait(10, SC_PS);

a simulator resolution of 10ps would be fine. No rounding off of the ones digits in the time
units would occur. However, a specification of:

sc_wait(9, SC_PS);

would require you to set the resolution limit to 1ps in order to avoid inaccuracies caused by
rounding.
Sim SE User’s Manual

Simulating SystemC designs UM-175
Initialization and cleanup of SystemC state-based code

State-based code should not be used in Constructors and Destructors. Constructors and
Destructors should be reserved for creating and destroying SystemC design objects, such
as sc_modules or sc_signals. State-based code should also not be used in the elaboration
phase callbacks before_end_of_elaboration() and end_of_elaboration().

The following virtual functions should be used to initialize and clean up state-based code,
such as logfiles or the VCD trace functionality of SystemC. They are virtual methods of the
following classes: sc_port_base, sc_module, sc_channel, and sc_prim_channel. You can
think of them as phase callback routines in the SystemC language:

• before_end_of_elaboration ()
Called after all constructors are called, but before port binding.

• end_of_elaboration ()
Called at the end of elaboration after port binding. This function is available in the
SystemC 2.0.1 reference simulator.

• start_of_simulation ()
Called before simulation starts. Simulation-specific initialization code can be placed in
this function.

• end_of_simulation ()
Called before ending the current simulation session.

The call sequence for these functions with respect to the SystemC object construction and
destruction is as follows:

1 Constructors

2 before_end_of_elaboration ()

3 end_of_elaboration ()

4 start_of_simulation ()

5 end_of_simulation ()

6 Destructors

Usage of callbacks

The start_of_simulation() callback is used to initialize any state-based code. The
corresponding cleanup code should be placed in the end_of_simulation() callback. These
callbacks are only called during simulation by vsim and thus, are safe.

If you have a design in which some state-based code must be placed in the constructor,
destructor, or the elaboration callbacks, you can use the mti_IsVoptMode() function to
determine if the elaboration is being run by vopt (CR-371). You can use this function to
prevent vopt from executing any state-based code.
ModelSim SE User’s Manual

UM-176 6 - SystemC simulation

Model
Debugging the design

You can debug SystemC designs using all of ModelSim’s debugging features, with the
exception of the Dataflow window.

Viewable SystemC objects

Objects which may be viewed in SystemC for debugging purposes are as shown in the
following table.

 Channels Ports Variables Aggregates

sc_signal<type>
sc_signal_rv<width>
sc_signal_resolved
sc_clock (a
hierarchical channel)
sc_mutex
sc_fifo

sc_in<type>
sc_out<type>
sc_inout<type>
sc_in_rv<width>
sc_out_rv<width>
sc_inout_rv<width>
sc_in_resolved
sc_out_resolved
sc_inout_resolved
sc_in_clk
sc_out_clk
sc_inout_clk
sc_fifo_in
sc_fifo_out

Module member variables
of all C++ and SystemC
built-in types (listed in the
Types list below) are
supported.

Aggregates of SystemC
signals or ports.

Only three types of
aggregates are supported
for debug:

struct
class
array
Sim SE User’s Manual

Debugging the design UM-177
Types (<type>) of the objects which may be viewed for debugging are the following:

Waveform compare

Waveform compare supports the viewing of SystemC signals and variables. You can
compare SystemC objects to SystemC, Verilog or VHDL objects.

For pure SystemC compares, you can compare any two signals that match type and size
exactly; for C/C++ types and some SystemC types, sign is ignored for compares. Thus, you
can compare char to unsigned char or sc_signed to sc_unsigned. All SystemC fixed-point
types may be mixed as long as the total number of bits and the number of integer bits match.

 Types

bool, sc_bit
sc_logic
sc_bv<width>
sc_lv<width>
sc_int<width>
sc_uint<width>
sc_fix
sc_fix_fast
sc_fixed<W,I,Q,O,N>
sc_fixed_fast<W,I,Q,O,N>
sc_ufix
sc_ufix_fast
sc_ufixed
sc_ufixed_fast
sc_signed
sc_unsigned
char, unsigned char
int, unsigned int
short, unsigned short
long, unsigned long
sc_bigint<width>
sc_biguint<width>
sc_ufixed<W,I,Q,O,N>
short, unsigned short
long long, unsigned long long
float
double
enum
pointer
class
struct
union
bit_fields
ModelSim SE User’s Manual

UM-178 6 - SystemC simulation

Model
Mixed-language compares are supported as listed in the following table:

The number of elements must match for vectors; specific indexes are ignored.

Source-level debug

In order to debug your SystemC source code, you must compile the design for debug using
the -g C++ compiler option. You can add this option directly to the sccom (CR-254)
command line on a per run basis, with a command such as:

sccom mytop -g

Or, if you plan to use it every time you run the compiler, you can specify it in the
modelsim.ini file with the SccomCppOptions variable. See "[sccom] SystemC compiler
control variables" (UM-528) for more information.

The source code debugger, C Debug (UM-399), is automatically invoked when the design is
compiled for debug in this way.

You can set breakpoints in a Source window, and single-step through your SystemC/C++
source code. .

 C/C++ types bool, char, unsigned char
short, unsigned short
int, unsigned int
long, unsigned long

SystemC types sc_bit, sc_bv, sc_logic, sc_lv
sc_int, sc_uint
sc_bigint, sc_biguint
sc_signed, sc_unsigned

Verilog types net, reg

VHDL types bit, bit_vector, boolean, std_logic, std_logic_vector
Sim SE User’s Manual

Debugging the design UM-179
The gdb debugger has a known bug that makes it impossible to set breakpoints reliably in
constructors or destructors. Try to avoid setting breakpoints in constructors of SystemC
objects; it may crash the debugger.

You can view and expand SystemC objects in the Objects pane and processes in the Active
Processes pane.
ModelSim SE User’s Manual

UM-180 6 - SystemC simulation

Model
SystemC object and type display in ModelSim

This section contains information on how ModelSim displays certain objects and types, as
they may differ from other simulators.

Support for aggregates

ModelSim supports aggregates of SystemC signals or ports. Three types of aggregates are
supported: structures, classes, and arrays. Unions are not supported for debug. An
aggregate of signals or ports will be shown as a signal of aggregate type. For example, an
aggregate such as:

sc_signal <sc_logic> a[3];

is equivalent to:

sc_signal <sc_lv<3>> a;

for debug purposes. ModelSim shows one signal - object "a" - in both cases.

The following aggregate

sc_signal <float> fbus [6];

when viewed in the Wave window, would appear as follows:
Sim SE User’s Manual

SystemC object and type display in ModelSim UM-181
Viewing FIFOs

In ModelSim, the values contained in an sc_fifo appear in a definite order. The top-most or
left-most value is always the next to be read from the FIFO. Elements of the FIFO that are
not in use are not displayed.

Example of a signal where the FIFO has five elements:

examine f_char
{}
VSIM 4> # run 10
VSIM 6> # examine f_char
A
VSIM 8> # run 10
VSIM 10> # examine f_char
{A B}
VSIM 12> # run 10
VSIM 14> # examine f_char
{A B C}
VSIM 16> # run 10
VSIM 18> # examine f_char
{A B C D}
VSIM 20> # run 10
VSIM 22> # examine f_char
{A B C D E}
VSIM 24> # run 10
VSIM 26> # examine f_char
{B C D E}
VSIM 28> # run 10
VSIM 30> # examine f_char
{C D E}
VSIM 32> # run 10
VSIM 34> # examine f_char
{D E}
ModelSim SE User’s Manual

UM-182 6 - SystemC simulation

Model
Differences between ModelSim and the OSCI simulator

ModelSim is based upon the 2.0.1 reference simulator provided by OSCI. However, there
are some minor but key differences to understand:

• vsim calls sc_initialize() by default at the end of elaboration. The user has to explicitly
call sc_initialize() in the reference simulator. You should remove calls to sc_initialize()
from your code.

• The default time resolution of the reference simulator is 1ps. For vsim it is 1ns. The user
can set the time resolution by using the vsim command with the -t option or by modifying
the value of the Resolution (UM-533) variable in the modelsim.ini file.

• All SystemC processes without a dont_initialize() modifier are executed once at the end
of elaboration. This can cause print messages to appear from user models before the first
VSIM> prompt occurs. This behavior is normal and necessary in order to achieve
compliance with both the SystemC and HDL LRMs.

• The run command in ModelSim is equivalent to sc_start(). In the reference simulator,
sc_start() runs the simulation for the duration of time specified by its argument. In
ModelSim the run command (CR-252) runs the simulation for the amount of time
specified by its argument.

• The sc_cycle(), sc_start(), sc_main() & sc_set_time_resolution() functions are not
supported in ModelSim.

Fixed point types

Contrary to OSCI, ModelSim compiles the SystemC kernel with support for fixed point
types. If you want to compile your own SystemC code to enable that support, you’ll need
to define the compile time macro SC_INCLUDE_FX. You can do this in one of two ways:

• enter the g++/aCC argument -DSC_INCLUDE_FX on the sccom (CR-254) command
line, such as:

sccom -DSC_INCLUDE_FX top.cpp

• add a define statement to the C++ source code before the inclusion of the systemc.h, as
shown below:

#define SC_INCLUDE_FX
#include "systemc.h"
Sim SE User’s Manual

Differences between ModelSim and the OSCI simulator UM-183
OSCI 2.1 features supported

ModelSim is fully compliant with the OSCI version 2.0.1. In addition, the following 2.1
features are supported:

Hierarchical reference SystemC functions

The following two member functions of sc_signal, used to control and observe hierarchical
signals in a design, are supported:

• control_foreign_signal()

• observe_foreign_signal()

For more information regarding the use of these functions, see "Hierarchical references in
mixed HDL/SystemC designs" (UM-192).

Phase callback

The following functions are supported for phase callbacks:

• before_end_of_elaboration()

• start_of_simulation()

• end_of_simulation()

For more information regarding the use of these functions, see "Initialization and cleanup
of SystemC state-based code" (UM-175).

Accessing command-line arguments

The following global functions allow you to gain access to command-line arguments:

• sc_argc()
Returns the number of arguments specified on the vsim (CR-373) command line with the
-sc_arg argument. This function can be invoked from anywhere within SystemC code.

• sc_argv()
Returns the arguments specified on the vsim (CR-373) command line with the -sc_arg
argument. This function can be invoked from anywhere within SystemC code.

Example:

When vsim is invoked with the following command line:

vsim -sc_arg "-a" -c -sc_arg "-b -c" -t ns -sc_arg -d

sc_argc() and sc_argv() will behave as follows:

 int argc;
 const char * const * argv;

 argc = sc_argc();
 argv = sc_argv();

The number of arguments (argc) is now 4.

argv[0] is "vsim"
argv[1] is "-a"
argv[2] is "-b -c"
argv[3] is "-d"
ModelSim SE User’s Manual

UM-184 6 - SystemC simulation

Model
Troubleshooting SystemC errors

In the process of modifying your SystemC design to run on ModelSim, you may encounter
several common errors. This section highlights some actions you can take to correct such
errors.

Unexplained behaviors during loading or runtime

If your SystemC simulation behaves in otherwise unexplainable ways, you should
determine whether you need to adjust the stack space ModelSim allocates for threads in
your design. The required size for a stack depends on the depth of functions on that stack
and the number of bytes they require for automatic (local) variables.

By default, the SystemC stack size is 10,000 bytes per thread.

You may have one or more threads needing a larger stack size. If so, call the SystemC
function set_stack_size() and adjust the stack to accommodate your needs. Note that you
can ask for too much stack space and have unexplained behavior as well.

Errors during loading

When simulating your SystemC design, you might get a "failed to load sc lib" message
because of an undefined symbol, looking something like this:

Loading /home/cmg/newport2_systemc/chip/vhdl/work/systemc.so

** Error: (vsim-3197) Load of "/home/cmg/newport2_systemc/chip/vhdl/work/
systemc.so" failed: ld.so.1:

/home/icds_nut/modelsim/5.8a/sunos5/vsimk: fatal: relocation error: file

/home/cmg/newport2_systemc/chip/vhdl/work/systemc.so: symbol
_Z28host_respond_to_vhdl_requestPm:

referenced symbol not found.

** Error: (vsim-3676) Could not load shared library /home/cmg/
newport2_systemc/chip/vhdl/work/systemc.so for SystemC module 'host_xtor'.

Source of undefined symbol message

The causes for such an error could be:

• missing definition

• missing type

• bad link order specified in sccom -link

• multiply-defined symbols

Missing definition

If the undefined symbol is a C function in your code or a library you are linking with, be
sure that you declared it as an extern "C" function:

extern "C" void myFunc();
Sim SE User’s Manual

Troubleshooting SystemC errors UM-185
This should appear in any header files include in your C++ sources compiled by sccom. It
tells the compiler to expect a regular C function; otherwise the compiler decorates the name
for C++ and then the symbol can't be found.

Also, be sure that you actually linked with an object file that fully defines the symbol. You
can use the "nm" utility on Unix platforms to test your SystemC object files and any
libraries you link with your SystemC sources. For example, assume you ran the following
commands:

sccom test.cpp
sccom -link libSupport.a

If there is an unresolved symbol and it is not defined in your sources, it should be correctly
defined in any linked libraries:

nm libSupport.a | grep "mySymbol"

Missing type

When you get errors during design elaboration, be sure that all the items in your SystemC
design hierarchy, including parent elements, are declared in the declarative region of a
module. If not, sccom ignores them.

For example, we have a design containing SystemC over VHDL. The following declaration
of a child module "test" inside the constructor module of the code is not allowed and will
produce an error:

SC_MODULE(Export)
{

SC_CTOR(Export)
{

test *testInst;
testInst = new test("test");

}
};

The error results from the fact that the SystemC parse operation will not see any of the
children of "test". Nor will any debug information be attached to it. Thus, the signal has no
type information and can not be bound to the VHDL port.

The solution is to move the element declaration into the declarative region of the module.

Misplaced "-link" option

The order in which you place the -link option within the sccom -link command is critical.
There is a big difference between the following two commands:

sccom -link liblocal.a

and

sccom liblocal.a -link

The first command ensures that your SystemC object files are seen by the linker before the
library "liblocal.a" and the second command ensures that "liblocal.a" is seen first. Some
linkers can look for undefined symbols in libraries that follow the undefined reference
while others can look both ways. For more information on command syntax and
dependencies, see sccom (CR-254).
ModelSim SE User’s Manual

UM-186 6 - SystemC simulation

Model
Multiple symbol definitions

The most common type of error found during sccom -link operation is the multiple symbol
definition error. This typically arises when the same global symbol is present in more than
one .o file. The error message looks something like this:

work/sc/gensrc/test_ringbuf.o: In function
`test_ringbuf::clock_generator(void)':

work/sc/gensrc/test_ringbuf.o(.text+0x4): multiple definition of
`test_ringbuf::clock_generator(void)'

work/sc/test_ringbuf.o(.text+0x4): first defined here

A common cause of multiple symbol definitions involves incorrect definition of symbols
in header files. If you have an out-of-line function (one that isn’t preceded by the "inline"
keyword) or a variable defined (i.e. not just referenced or prototyped, but truly defined) in
a .h file, you can't include that .h file in more than one .cpp file.

Text in .h files is included into .cpp files by the C++ preprocessor. By the time the compiler
sees the text, it's just as if you had typed the entire text from the .h file into the .cpp file. So
a .h file included into two .cpp files results in lots of duplicate text being processed by the
C++ compiler when it starts up. Include guards are a common technique to avoid duplicate
text problems.

If an .h file has an out-of-line function defined, and that .h file is included into two .c files,
then the out-of-line function symbol will be defined in the two corresponding. o files. This
leads to a multiple symbol definition error during sccom -link.

To solve this problem, add the "inline" keyword to give the function "internal linkage".
This makes the function internal to the .o file, and prevents the function's symbol from
colliding with a symbol in another .o file.

For free functions or variables, you could modify the function definition by adding the
"static" keyword instead of "inline", although "inline" is better for efficiency.

Sometimes compilers do not honor the "inline" keyword. In such cases, you should move
your function(s) from a header file into an out-of-line implementation in a .cpp file.
Sim SE User’s Manual

 UM-187
7 - Mixed-language simulation

Chapter contents
Usage flow for mixed-language simulations UM-189

Separate compilers, common design libraries UM-190
Access limitations in mixed-language designs UM-190
Optimizing mixed designs UM-190
Simulator resolution limit UM-191
Runtime modeling semantics UM-191
Hierarchical references in mixed HDL/SystemC designs. . . UM-192

Mapping data types UM-193
Verilog to VHDL mappings UM-193
VHDL to Verilog mappings UM-195
Verilog and SystemC signal interaction and mappings . . . UM-196
VHDL and SystemC signal interaction and mappings . . . UM-200

VHDL: instantiating Verilog UM-203
Verilog instantiation criteria UM-203
Component declaration UM-203
vgencomp component declaration UM-204
Modules with unnamed ports UM-206

Verilog: instantiating VHDL UM-207
VHDL instantiation criteria UM-207
SDF annotation UM-208

SystemC: instantiating Verilog UM-209
Verilog instantiation criteria UM-209
SystemC foreign module declaration UM-209
Parameter support for SystemC instantiating Verilog . . . UM-211
Example of parameter use. UM-212

Verilog: instantiating SystemC UM-214
SystemC instantiation criteria UM-214
Exporting SystemC modules UM-214
Parameter support for Verilog instantiating SystemC . . . UM-214
Example of parameter use. UM-214

SystemC: instantiating VHDL UM-217
VHDL instantiation criteria UM-217
SystemC foreign module declaration UM-217
Generic support for SystemC instantiating VHDL UM-218
Example of generic use UM-218

VHDL: instantiating SystemC UM-222
SystemC instantiation criteria UM-222
Component declaration UM-222
vgencomp component declaration UM-223
Exporting SystemC modules UM-223
sccom -link UM-223
Generic support for VHDL instantiating SystemC UM-223
ModelSim SE User’s Manual

UM-188 7 - Mixed-language simulation

Model
ModelSim single-kernel simulation allows you to simulate designs that are written in
VHDL, Verilog, and SystemC (not all ModelSim versions support all languages). The
boundaries between languages are enforced at the level of a design unit. This means that
although a design unit itself must be entirely of one language type, it may instantiate design
units from another language. Any instance in the design hierarchy may be a design unit
from another language without restriction.
Sim SE User’s Manual

Usage flow for mixed-language simulations UM-189
Usage flow for mixed-language simulations

The usage flow for mixed-language designs is as follows:

1 Analyze HDL source code using vcom (CR-311) or vlog (CR-358) and SystemC C++
source code using sccom (CR-254). Analyze all modules in the design following order-
of-analysis rules.

• For SystemC designs with HDL instances:
Create a SystemC foreign module declaration for all Verilog and VHDL instances (see
"SystemC foreign module declaration" (UM-209) or (UM-217)).

• For Verilog/VHDL designs with SystemC instances:
Export any SystemC instances that will be directly instantiated by Verilog/VHDL using
the SC_MODULE_EXPORT macro. Exported SystemC modules can be instantianted
just as you would instantiate any Verilog/VHDL module or design unit.

2 For designs containing SystemC:
Link all objects in the design using sccom (CR-254) -link.

3 If you have Verilog modules in your mixed design that you would like to optimize, you
would run the vopt command (CR-371) on the top-level design unit. See "Optimizing
mixed designs" (UM-190).

4 Simulate the design with the vsim command (CR-373).

5 Issue run (CR-252) commands from the ModelSim GUI.

6 Debug your design using ModelSim GUI features.
ModelSim SE User’s Manual

UM-190 7 - Mixed-language simulation

Model
Separate compilers, common design libraries

VHDL source code is compiled by vcom (CR-311) and the resulting compiled design units
(entities, architectures, configurations, and packages) are stored in the working library.
Likewise, Verilog source code is compiled by vlog (CR-358) and the resulting design units
(modules and UDPs) are stored in the working library.

SystemC/C++ source code is compiled with the sccom command (CR-254). The resulting
object code is compiled into the working library.

Design libraries can store any combination of design units from any of the supported
languages, provided the design unit names do not overlap (VHDL design unit names are
changed to lower case). See "Design libraries" (UM-57) for more information about library
management.

Access limitations in mixed-language designs

The Verilog language allows hierarchical access to objects throughout the design. This is
not the case with VHDL or SystemC. You cannot directly read or change a VHDL or
SystemC object (signal, variable, generic, etc.) with a hierarchical reference within a
mixed-language design. Furthermore, you cannot directly access a Verilog object up or
down the hierarchy if there is an interceding VHDL or SystemC block.

You have two options for accessing VHDL objects or Verilog objects "obstructed" by an
interceding block: 1) propagate the value through the ports of all design units in the
hierarchy; 2) use the Signal Spy procedures or system tasks (see Chapter 17 - Signal Spy
for details).

To access obstructed SystemC objects, propagate the value through the ports of all design
units in the hierarchy or use the control/observe functions (see "Hierarchical references in
mixed HDL/SystemC designs" (UM-192).

Optimizing mixed designs

The vopt command (CR-371) performs global optimizations to improve simulator
performance. In the current release, vopt primarily optimizes Verilog design units. See
"Optimizing Verilog designs" (UM-124) for further details.
Sim SE User’s Manual

Separate compilers, common design libraries UM-191
Simulator resolution limit

In a mixed-language design with only one top, the resolution of the top design unit is
applied to the whole design. If the root of the mixed design is VHDL, then VHDL simulator
resolution rules are used (see "Simulator resolution limit" (UM-78) for VHDL details). If the
root of the mixed design is Verilog, Verilog rules are used (see "Simulator resolution limit"
(UM-129) for Verilog details). If the root is SystemC, then SystemC rules are used (see
"Running simulation" (UM-173) for SystemC details).

In the case of a mixed-language design with multiple tops, the following algorithm is used:

• If VHDL or SystemC modules are present, then the Verilog resolution is ignored. An
error is issued if the Verilog resolution is finer than the chosen one.

• If both VHDL and SystemC are present, then the resolution is chosen based on which
design unit is elaborated first. For example:

vsim sc_top vhdl_top -do vsim.do

In this case the SystemC resolution will be chosen.

vsim vhdl_top sc_top -do vsim.do

In this case the VHDL resolution will be chosen.

• All resolutions specified in the source files are ignored if vsim is invoked with the -t
option.

Runtime modeling semantics

The ModelSim simulator is compliant with all pertinent Language Reference Manuals. To
achieve this compliance, the sequence of operations in one simulation iteration (i.e. delta
cycle) is as follows:

• SystemC processes are run

• Signal updates are made

• HDL processes are run
ModelSim SE User’s Manual

UM-192 7 - Mixed-language simulation

Model
Hierarchical references in mixed HDL/SystemC designs

A SystemC signal (including sc_signal, sc_buffer, sc_signal_resolved, and sc_signal_rv)
can control or observe an HDL signal using two member functions of sc_signal:

bool control_foreign_signal(const char* name);
bool observe_foreign_signal(const char* name);

The argument (const char* name) is a full hierarchical path to an HDL signal or port. The
return value is "true" if the HDL signal is found and its type is compatible with the SystemC
signal type. See tables for Verilog "Data type mapping" (UM-197) and VHDL "Data type
mapping" (UM-200) to view a list of types supported at the mixed language boundary. If it
is a supported boundary type, it is supported for hierarchical references. If the function is
called during elaboration time, when the HDL signal has not yet elaborated, the function
always returns "true"; however, an error is issued before simulation starts.

Control

When a SystemC signal calls control_foreign_signal() on an HDL signal, the HDL signal
is considered a fanout of the SystemC signal. This means that every value change of the
SystemC signal is propagated to the HDL signal. If there is a pre-existing driver on the
HDL signal which has been controlled, the value is changed to reflect the SystemC signal’s
value. This value remains in effect until a subsequent driver transaction occurs on the HDL
signal, following the semantics of the force -deposit command.

Observe

When a SystemC signal calls observe_foreign_signal() on an HDL signal, the SystemC
signal is considered a fanout of the HDL signal. This means that every value change of the
HDL signal is propagated to the SystemC signal. If there is a pre-existing driver on the
SystemC signal which has been observed, the value is changed to reflect the HDL signal’s
value. This value remains in effect until a subsequent driver transaction occurs on the
SystemC signal, following the semantics of the force -deposit command.

Once a SystemC signal executes a control or observe on an HDL signal, the effect stays
throughout the whole simulation. Any subsequent control/observe on that signal will be an
error.

Example:

SC_MODULE(test_ringbuf)
{
 sc_signal<bool> observe_sig;
 sc_signal<sc_lv<4> > control_sig;

 // HDL module instance
 ringbuf* ring_INST;

 SC_CTOR(test_ringbuf)
 {
 ring_INST = new ringbuf("ring_INST", "ringbuf");

 observe_sig.observe_foreign_signal("/test_ringbuf/ring_INST/
block1_INST/buffers(0)");
 control_sig.control_foreign_signal("/test_ringbuf/ring_INST/
block1_INST/sig");
 }
};
Sim SE User’s Manual

Mapping data types UM-193
Mapping data types

Cross-language (HDL) instantiation does not require any extra effort on your part. As
ModelSim loads a design it detects cross-language instantiations – made possible because
a design unit's language type can be determined as it is loaded from a library – and the
necessary adaptations and data type conversions are performed automatically. SystemC
and HDL cross-language instantiation requires minor modification of SystemC source code
(addition of SC_MODULE_EXPORT, sc_foreign_module, etc.).

A VHDL instantiation of Verilog may associate VHDL signals and values with Verilog
ports and parameters. Likewise, a Verilog instantiation of VHDL may associate Verilog
nets and values with VHDL ports and generics. The same holds true for SystemC and
VHDL/Verilog ports.

ModelSim automatically maps between the language data types as shown in the sections
below.

Verilog to VHDL mappings

Verilog parameters

The type of a Verilog parameter is determined by its initial value.

Verilog ports

The allowed VHDL types for ports connected to Verilog nets and for signals connected to
Verilog ports are:

The vl_logic type is an enumeration that defines the full state set for Verilog nets, including
ambiguous strengths. The bit and std_logic types are convenient for most applications, but
the vl_logic type is provided in case you need access to the full Verilog state set. For

Verilog type VHDL type

integer integer

real real

string string

Allowed VHDL types

bit

bit_vector

std_logic

std_logic_vector

vl_logic

vl_logic_vector
ModelSim SE User’s Manual

UM-194 7 - Mixed-language simulation

Model
example, you may wish to convert between vl_logic and your own user-defined type. The
vl_logic type is defined in the vl_types package in the pre-compiled verilog library. This
library is provided in the installation directory along with the other pre-compiled libraries
(std and ieee). The source code for the vl_types package can be found in the files installed
with ModelSim. (See <install_dir>\modeltech\vhdl_src\verilog\vltypes.vhd.)

Verilog states

Verilog states are mapped to std_logic and bit as follows:

Verilog std_logic bit

HiZ 'Z' '0'

Sm0 'L' '0'

Sm1 'H' '1'

SmX 'W' '0'

Me0 'L' '0'

Me1 'H' '1'

MeX 'W' '0'

We0 'L' '0'

We1 'H' '1'

WeX 'W' '0'

La0 'L' '0'

La1 'H' '1'

LaX 'W' '0'

Pu0 'L' '0'

Pu1 'H' '1'

PuX 'W' '0'

St0 '0' '0'

St1 '1' '1'

StX 'X' '0'

Su0 '0' '0'

Su1 '1' '1'

SuX 'X' '0'
Sim SE User’s Manual

Mapping data types UM-195
For Verilog states with ambiguous strength:

• bit receives '0'

• std_logic receives 'X' if either the 0 or 1 strength component is greater than or equal to
strong strength

• std_logic receives 'W' if both the 0 and 1 strength components are less than strong
strength

VHDL to Verilog mappings

VHDL generics

When a scalar type receives a real value, the real is converted to an integer by truncating
the decimal portion.

Type time is treated specially: the Verilog number is converted to a time value according
to the ‘timescale directive of the module.

Physical and enumeration types receive a value that corresponds to the position number
indicated by the Verilog number. In VHDL this is equivalent to T'VAL(P), where T is the
type, VAL is the predefined function attribute that returns a value given a position number,
and P is the position number.

VHDL type bit is mapped to Verilog states as follows:

VHDL type std_logic is mapped to Verilog states as follows:

VHDL type Verilog type

integer integer or real

real integer or real

time integer or real

physical integer or real

enumeration integer or real

string string literal

bit Verilog

'0' St0

'1' St1

std_logic Verilog

'U' StX

'X' StX

'0' St0
ModelSim SE User’s Manual

UM-196 7 - Mixed-language simulation

Model
Verilog and SystemC signal interaction and mappings

SystemC has a more complex signal-level interconnect scheme than Verilog. Design units
are interconnected via hierarchical and primitive channels. An sc_signal<> is one type of
primitive channel. The following section discusses how various SystemC channel types
map to Verilog wires when connected to each other across the language boundary.

Channel and Port type mapping

The following port type mapping table lists all channels. Three types of primitive channels
and one hierarchical channel are supported on the language boundary (SystemC modules
connected to Verilog modules).

'1' St1

'Z' HiZ

'W' PuX

'L' Pu0

'H' Pu1

'–' StX

std_logic Verilog

Channels Ports Verilog mapping

sc_signal<type> sc_in<type>
sc_out<type>
sc_inout<type>

Depends on type. See table
entitled "Data type mapping" (UM-

197).

sc_signal_rv<width> sc_in_rv<width>
sc_out_rv<width>
sc_inout_rv<width>

wire [width-1:0]

sc_signal_resolved sc_in_resolved
sc_out_resolved
sc_inout_resolved

wire [width-1:0]

sc_clock sc_in_clk
sc_out_clk
sc_inout_clk

wire

sc_mutex N/A Not supported on language
boundary

sc_fifo sc_fifo_in
sc_fifo_out

Not supported on language
boundary

sc_semaphore N/A Not supported on language
boundary
Sim SE User’s Manual

Mapping data types UM-197
Data type mapping

SystemC’s sc_signal<> types are mapped to Verilog types as follows:

sc_buffer N/A Not supported on language
boundary

user-defined user-defined Not supported on language
boundary

SystemC Verilog

bool, sc_bit reg, wire

sc_logic reg, wire

sc_bv<width> reg [width-1:0], wire [width-1:0]

sc_lv<width> reg [width-1:0], wire [width-1:0]

sc_int<width>, sc_uint<width> reg [width-1:0], wire [width-1:0]

char, unsigned char reg [width-1:0], wire [7:0]

int, unsigned int reg [width-1:0], wire [31:0]

long, unsigned long reg [width-1:0], wire [31:0]

sc_bigint<width>,
sc_biguint<width>

Not supported on language boundary

sc_fixed<W,I,Q,O,N>,
sc_ufixed<W,I,Q,O,N>

Not supported on language boundary

short, unsigned short Not supported on language boundary

long long, unsigned long long Not supported on language boundary

float Not supported on language boundary

double Not supported on language boundary

enum Not supported on language boundary

pointers Not supported on language boundary

class Not supported on language boundary

struct Not supported on language boundary

union Not supported on language boundary

bit_fields Not supported on language boundary

Channels Ports Verilog mapping
ModelSim SE User’s Manual

UM-198 7 - Mixed-language simulation

Model
Port direction

Verilog port directions are mapped to SystemC as follows:

Verilog to SystemC state mappings

Verilog states are mapped to sc_logic, sc_bit, and bool as follows:

Verilog SystemC

input sc_in<type>, sc_in_resolved, sc_in_rv<width>

output sc_out<type>, sc_out_resolved, sc_out_rv<width>

inout sc_inout<type>, sc_inout_resolved, sc_inout_rv<width>

Verilog sc_logic sc_bit bool

HiZ 'Z' '0' false

Sm0 '0' '0' false

Sm1 '1' '1' true

SmX 'X' '0' false

Me0 '0' '0' false

Me1 '1' '1' true

MeX 'X' '0' false

We0 '0' '0' false

We1 '1' '1' true

WeX 'X' '0' false

La0 '0' '0' false

La1 '1' '1' true

LaX 'X' '0' false

Pu0 '0' '0' false

Pu1 '1' '1' true

PuX 'X' '0' false

St0 '0' '0' false

St1 '1' '1' true

StX 'X' '0' false

Su0 '0' '0' false

Su1 '1' '1' true
Sim SE User’s Manual

Mapping data types UM-199
For Verilog states with ambiguous strength:

• sc_bit receives '1' if the value component is 1, else it receives ’0’

• bool receives true if the value component is 1, else it receives false

• sc_logic receives 'X' if the value component is X, H, or L

• sc_logic receives '0' if the value component is 0

• sc_logic receives ’1’ if the value component is 1

SystemC to Verilog state mappings

SystemC type bool is mapped to Verilog states as follows:

SystemC type sc_bit is mapped to Verilog states as follows:

SystemC type sc_logic is mapped to Verilog states as follows:

SuX 'X' '0' false

bool Verilog

false St0

true St1

sc_bit Verilog

'0' St0

'1' St1

sc_logic Verilog

'0' St0

'1' St1

'Z' HiZ

'X' StX

Verilog sc_logic sc_bit bool
ModelSim SE User’s Manual

UM-200 7 - Mixed-language simulation

Model
VHDL and SystemC signal interaction and mappings

SystemC has a more complex signal-level interconnect scheme than VHDL. Design units
are interconnected via hierarchical and primitive channels. An sc_signal<> is one type of
primitive channel. The following section discusses how various SystemC channel types
map to VHDL types when connected to each other across the language boundary.

Port type mapping

The following port type mapping table lists all channels. Three types of primitive channels
and one hierarchical channel are supported on the language boundary (SystemC modules
connected to VHDL modules).

Data type mapping

SystemC’s sc_signal types are mapped to VHDL types as follows

Channels Ports VHDL mapping

sc_signal<type> sc_in<type>
sc_out<type>
sc_inout<type>

Depends on type. See table entitled
"Data type mapping" (UM-200)
below.

sc_signal_rv<width> sc_in_rv<width>
sc_out_rv<width>
sc_inout_rv<width>

std_logic_vector(width-1 downto 0)

sc_signal_resolved sc_in_resolved
sc_out_resolved
sc_inout_resolved

std_logic

sc_clock sc_in_clk
sc_out_clk
sc_inout_clk

bit/std_logic/boolean

sc_mutex N/A Not supported on language boundary

sc_fifo sc_fifo_in
sc_fifo_out

Not supported on language boundary

sc_semaphore N/A Not supported on language boundary

sc_buffer N/A Not supported on language boundary

user-defined user-defined Not supported on language boundary

SystemC VHDL

bool, sc_bit bit/std_logic/boolean

sc_logic std_logic

sc_bv<width> bit_vector(width-1 downto 0)

sc_lv<width> std_logic_vector(width-1 downto 0)
Sim SE User’s Manual

Mapping data types UM-201
Port direction mapping

VHDL port directions are mapped to SystemC as follows:

sc_int<W>, sc_uint<width> bit_vector(width-1 downto 0)

char, unsigned char bit_vector(7 downto 0)

int, unsigned int bit_vector(31 downto 0)

long, unsigned long bit_vector(31 downto 0)

sc_bigint<width>,
sc_biguint<width>

Not supported on language boundary

sc_fixed<W,I,Q,O,N>,
sc_ufixed<W,I,Q,O,N>

Not supported on language boundary

short, unsigned short Not supported on language boundary

long long, unsigned long Not supported on language boundary

float Not supported on language boundary

double Not supported on language boundary

enum Not supported on language boundary

pointers Not supported on language boundary

class Not supported on language boundary

structure Not supported on language boundary

union Not supported on language boundary

bit_fields Not supported on language boundary

VHDL SystemC

in sc_in<type>, sc_in_resolved, sc_in_rv<w>

out sc_out<type>, sc_out_resolved, sc_out_rv<w>

inout sc_inout<type>, sc_inout_resolved,
sc_inout_rv<w>

buffer sc_out<type>, sc_out_resolved, sc_out_rv<w>

SystemC VHDL
ModelSim SE User’s Manual

UM-202 7 - Mixed-language simulation

Model
VHDL to SystemC state mapping

VHDL states are mapped to sc_logic, sc_bit, and bool as follows:

SystemC to VHDL state mapping

SystemC type bool is mapped to VHDL boolean as follows:

SystemC type sc_bit is mapped to VHDL bit as follows:

SystemC type sc_logic is mapped to VHDL std_logic states as follows:

std_logic sc_logic sc_bit bool

'U' 'X' '0' false

'X' 'X' '0' false

'0' '0' '0' false

'1' '1' '1' true

'Z' 'Z' '0' false

'W' 'X' '0' false

'L' '0' '0' false

'H' '1' '1' true

'-' 'X' '0' false

bool VHDL

false false

true true

sc_bit VHDL

'0' '0'

'1' '1'

sc_logic std_logic

'0' '0'

'1' '1'

'Z' 'Z'

'X' 'X'
Sim SE User’s Manual

VHDL: instantiating Verilog UM-203
VHDL: instantiating Verilog

Once you have generated a component declaration for a Verilog module, you can
instantiate the component just like any other VHDL component. You can reference a
Verilog module in the entity aspect of a component configuration – all you need to do is
specify a module name instead of an entity name. You can also specify an optional
secondary name for an optimized sub-module. Further, you can reference a Verilog
configuration in the configuration aspect of a VHDL component configuration - just
specify a Verilog configuration name instead of a VHDL configuration name.

Verilog instantiation criteria

A Verilog design unit may be instantiated within VHDL if it meets the following criteria:

• The design unit is a module or configuration. UDPs are not allowed.

• The ports are named ports (see "Modules with unnamed ports" (UM-206) below).

• The ports are not connected to bidirectional pass switches (it is not possible to handle pass
switches in VHDL).

Component declaration

A Verilog module that is compiled into a library can be referenced from a VHDL design as
though the module is a VHDL entity. Likewise, a Verilog configuration can be referenced
as though it were a VHDL configuration.

The interface to the module can be extracted from the library in the form of a component
declaration by running vgencomp (CR-330). Given a library and module name, vgencomp
(CR-330) writes a component declaration to standard output.

The default component port types are:

• std_logic

• std_logic_vector

Optionally, you can choose:

• bit and bit_vector

• vl_logic and vl_logic_vector

VHDL and Verilog identifiers

The VHDL identifiers for the component name, port names, and generic names are the
same as the Verilog identifiers for the module name, port names, and parameter names. If
a Verilog identifier is not a valid VHDL 1076-1987 identifier, it is converted to a VHDL
1076-1993 extended identifier (in which case you must compile the VHDL with the -93 or
higher switch). Any uppercase letters in Verilog identifiers are converted to lowercase in
the VHDL identifier, except in the following cases:

• The Verilog module was compiled with the -93 switch. This means vgencomp (CR-330)
should use VHDL 1076-1993 extended identifiers in the component declaration to
preserve case in the Verilog identifiers that contain uppercase letters.
ModelSim SE User’s Manual

UM-204 7 - Mixed-language simulation

Model
• The Verilog module, port, or parameter names are not unique unless case is preserved. In
this event, vgencomp (CR-330) behaves as if the module was compiled with the -93
switch for those names only.

If you use Verilog identifiers where the names are unique by case only, use the -93
argument when compiling mixed-language designs.

Examples

If the Verilog module is compiled with -93:

vgencomp component declaration

vgencomp (CR-330) generates a component declaration according to these rules:

Generic clause

A generic clause is generated if the module has parameters. A corresponding generic is
defined for each parameter that has an initial value that does not depend on any other
parameters.

Verilog identifier VHDL identifier

topmod topmod

TOPMOD topmod

TopMod topmod

top_mod top_mod

_topmod _topmod\

\topmod topmod

\\topmod\ \topmod\

Verilog identifier VHDL identifier

topmod topmod

TOPMOD \TOPMOD\

TopMod \TopMod\

top_mod top_mod

_topmod _topmod\

\topmod topmod

\\topmod\ \topmod\
Sim SE User’s Manual

VHDL: instantiating Verilog UM-205
The generic type is determined by the parameter's initial value as follows:

The default value of the generic is the same as the parameter's initial value.

Examples

Port clause

A port clause is generated if the module has ports. A corresponding VHDL port is defined
for each named Verilog port.

You can set the VHDL port type to bit, std_logic, or vl_logic. If the Verilog port has a
range, then the VHDL port type is bit_vector, std_logic_vector, or vl_logic_vector. If the
range does not depend on parameters, then the vector type will be constrained accordingly,
otherwise it will be unconstrained.

Examples

Configuration declarations are allowed to reference Verilog modules in the entity aspects
of component configurations. However, the configuration declaration cannot extend into a
Verilog instance to configure the instantiations within the Verilog module.

Parameter value Generic type

integer integer

real real

string literal string

Verilog parameter VHDL generic

parameter p1 = 1 - 3; p1 : integer := -2;

parameter p2 = 3.0; p2 : real := 3.000000;

parameter p3 = "Hello"; p3 : string := "Hello";

Verilog port VHDL port

input p1; p1 : in std_logic;

output [7:0] p2; p2 : out std_logic_vector(7 downto 0);

output [4:7] p3; p3 : out std_logic_vector(4 to 7);

inout [width-1:0] p4; p4 : inout std_logic_vector;
ModelSim SE User’s Manual

UM-206 7 - Mixed-language simulation

Model
Modules with unnamed ports

Verilog allows modules to have unnamed ports, whereas VHDL requires that all ports have
names. If any of the Verilog ports are unnamed, then all are considered to be unnamed, and
it is not possible to create a matching VHDL component. In such cases, the module may
not be instantiated from VHDL.

Unnamed ports occur when the module port list contains bit-selects, part-selects, or
concatenations, as in the following example:

module m(a[3:0], b[1], b[0], {c,d});
input [3:0] a;
input [1:0] b;
input c, d;

endmodule

Note that a[3:0] is considered to be unnamed even though it is a full part-select. A common
mistake is to include the vector bounds in the port list, which has the undesired side effect
of making the ports unnamed (which prevents the user from connecting by name even in
an all-Verilog design).

Most modules having unnamed ports can be easily rewritten to explicitly name the ports,
thus allowing the module to be instantiated from VHDL. Consider the following example:

module m(y[1], y[0], a[1], a[0]);
output [1:0] y;
input [1:0] a;

endmodule

Here is the same module rewritten with explicit port names added:

module m(.y1(y[1]), .y0(y[0]), .a1(a[1]), .a0(a[0]));
output [1:0] y;
input [1:0] a;

endmodule

"Empty" ports

Verilog modules may have "empty" ports, which are also unnamed, but they are treated
differently from other unnamed ports. If the only unnamed ports are "empty", then the other
ports may still be connected to by name, as in the following example:

module m(a, , b);
input a, b;

endmodule

Although this module has an empty port between ports "a" and "b", the named ports in the
module can still be connected to from VHDL.
Sim SE User’s Manual

Verilog: instantiating VHDL UM-207
Verilog: instantiating VHDL

You can reference a VHDL entity or configuration from Verilog as though the design unit
is a module or a configuration of the same name.

VHDL instantiation criteria

A VHDL design unit may be instantiated within Verilog if it meets the following criteria:

• The design unit is an entity/architecture pair or a configuration.

• The entity ports are of type bit, bit_vector, std_ulogic, std_ulogic_vector, vl_ulogic,
vl_ulogic_vector, or their subtypes. The port clause may have any mix of these types.

• The generics are of type integer, real, time, physical, enumeration, or string. String is the
only composite type allowed.

Entity/architecture names and escaped identifiers

An entity name is not case sensitive in Verilog instantiations. The entity default architecture
is selected from the work library unless specified otherwise. Since instantiation bindings
are not determined at compile time in Verilog, you must instruct the simulator to search
your libraries when loading the design. See "Library usage" (UM-117) for more information.

Alternatively, you can employ the escaped identifier to provide an extended form of
instantiation:

\mylib.entity(arch) u1 (a, b, c);
\mylib.entity u1 (a, b, c);
\entity(arch) u1 (a, b, c);

If the escaped identifier takes the form of one of the above and is not the name of a design
unit in the work library, then the instantiation is broken down as follows:

• library = mylib

• design unit = entity

• architecture = arch

Named port associations

Port associations may be named or positional. Use the same port names and port positions
that appear in the entity.

Named port associations are not case sensitive unless a VHDL port name is an extended
identifier (1076-1993). If the VHDL port name is an extended identifier, the association is
case sensitive and the VHDL identifier’s leading and trailing backslashes are removed
before comparison.

Generic associations

Generic associations are provided via the module instance parameter value list. List the
values in the same order that the generics appear in the entity. Parameter assignment to
generics is not case sensitive.

The defparam statement is not allowed for setting generic values.
ModelSim SE User’s Manual

UM-208 7 - Mixed-language simulation

Model
SDF annotation

A mixed VHDL/Verilog design can also be annotated with SDF. See "SDF for mixed
VHDL and Verilog designs" (UM-450) for more information.
Sim SE User’s Manual

SystemC: instantiating Verilog UM-209
SystemC: instantiating Verilog

To instantiate Verilog modules into a SystemC design, you must first create a "SystemC
foreign module declaration" (UM-209) for each Verilog module. Once you have created the
foreign module declaration, you can instantiate the foreign module just like any other
SystemC module.

Verilog instantiation criteria

A Verilog design unit may be instantiated within SystemC if it meets the following criteria:

• The design unit is a module (UDPs and Verilog primitives are not allowed).

• The ports are named ports (Verilog allows unnamed ports).

• The Verilog module name must be a valid C++ identifier.

• The ports are not connected to bidirectional pass switches (it is not possible to handle pass
switches in SystemC).

A Verilog module that is compiled into a library can be instantiated in a SystemC design as
though the module were a SystemC module by passing the Verilog module name to the
foreign module constructor. For an illustration of this, see "Example #1" (UM-210).

SystemC and Verilog identifiers

The SystemC identifiers for the module name and port names are the same as the Verilog
identifiers for the module name and port names. Verilog identifiers must be valid C++
identifiers. SystemC and Verilog are both case sensitive.

SystemC foreign module declaration

In cases where you want to run a mixed simulation with SystemC and Verilog, you must
generate and declare a foreign module that stands in for each Verilog module instantiated
under SystemC. The foreign modules can be created in one of two ways:

• running scgenmod, a utility that automatically generates your foreign module declaration
(much like vgencomp generates a component declaration)

• modifying your SystemC source code manually

Using scgenmod

After you have analyzed the design, you can generate a foreign module declaration with an
scgenmod command (CR-258) similar to the following:

scgenmod mod1

where mod1 is a Verilog module. A foreign module declaration for the specified module is
written to stdout.
ModelSim SE User’s Manual

UM-210 7 - Mixed-language simulation

Model
Guidelines for manual creation

Apply the following guidelines to the creation of foreign modules. A foreign module:

• contains ports corresponding to Verilog ports. These ports must be explicitly named in
the foreign module’s constructor initializer list.

• must not contain any internal design elements such as child instances, primitive channels,
or processes.

• must pass a secondary constructor argument denoting the module’s HDL name to the
sc_foreign_module base class constructor. For Verilog, the HDL name is simply the
Verilog module name corresponding to the foreign module, or [<lib>].<module>.

• parameterized modules are allowed, see "Parameter support for SystemC instantiating
Verilog" (UM-211) for details.

Example #1

A sample Verilog module to be instantiated in a SystemC design is:

module vcounter (clock, topcount, count);

input clock;
input topcount;
output count;

reg count;
...

endmodule

The SystemC foreign module declaration for the above Verilog module is:

class counter : public sc_foreign_module {
public:

sc_in<bool> clock;
sc_in<sc_logic> topcount;
sc_out<sc_logic> count;

counter(sc_module_name nm)
: sc_foreign_module(nm, "lib.vcounter"),
clock("clock"),
topcount("topcount"),
count("count")
{}

};

The Verilog module is then instantiated in the SystemC source as follows:

counter dut("dut");

where the constructor argument (dut) is the instance name of the Verilog module.
Sim SE User’s Manual

SystemC: instantiating Verilog UM-211
Example #2

Another variation of the SystemC foreign module declaration for the same Verilog module
might be:

class counter : public sc_foreign_module {
public:

...

...

...

counter(sc_module_name nm, char* hdl_name)
: sc_foreign_module(nm, hdl_name),
clock("clock"),

...

...

...

{}
};

The instantiation of this module would be:

counter dut("dut", "lib.counter");

Parameter support for SystemC instantiating Verilog

Since the SystemC language has no concept of parameters, parameterized values must be
passed from a SystemC parent to a Verilog child through the SystemC foreign module
(sc_foreign_module). See "SystemC foreign module declaration" (UM-209) for information
regarding the creation of sc_foreign_module.

Generic parameters in sc_foreign_module constructor

To instantiate a Verilog module containing parameterized values into the SystemC design,
you must pass two parameters to the sc_foreign_module constructor: the number of
parameters (int num_generics), and the parameter list (const char* generic_list). The
generic_list is listed as an array of const char*.

If you create your foreign module manually (see "Guidelines for manual creation" (UM-

210)), you must also pass the parameter information to the sc_foreign_module constructor.
If you use scgenmod to create the foreign module declaration, the parameter information
is detected in the HDL child and is incorporated automatically.

Example

Following the example shown above (UM-211), let’s see the parameter information that
would be passed to the SystemC foreign module declaration:

class counter : public sc_foreign_module {
public:

sc_in<bool> clk;
...

counter(sc_midule_name nm, char* hdl_name
int num_generics, const char* generic_list)

: sc_foreign_module(nm, hdl_name, num_generics,
generic_list),

{}
};
ModelSim SE User’s Manual

UM-212 7 - Mixed-language simulation

Model
Example of parameter use

Here is a complete example, ring buffer, including all files necessary for simulation.

// ringbuf.h
#ifndef INCLUDED_RINGBUF
#define INCLUDED_RINGBUF

class ringbuf : public sc_foreign_module {
public:

sc_in<bool> clk;
...

counter(sc_midule_name nm, char* hdl_name
int num_generics, const char* generic_list)

: sc_foreign_module(nm, hdl_name, num_generics,
generic_list),

{}
};

#endif

// test_ringbuf.h
#ifndef INCLUDED_TEST_RINGBUF
#define INCLUDED_TEST_RINGBUF

#include "ringbuf.h"
#include "string.h"

SC_MODULE(test_ringbuf)
{
 sc_signal<sc_logic> iclock;
 ...

...
 // Verilog module instance
 ringbuf* chip;

 SC_CTOR(test_ringbuf)
 : iclock("iclock"),

...

...

{
 const char* generic_list[3];

generic_list[0] = strdup("int_param=4");
generic_list[1] = strdup("real_param=2.6");
generic_list[2] = strdup("str_param=\"Hello\"");

// Enclose the string
// in double quotes

// Cleanup the memory allocated for theh generic list
for (int i = 0; i < 3; i++;)

free((char*)generic_list[i]);

// Create Verilog module instance.
 chip = new ringbuf("chip", "ringbuf", 3, generic_list);
Sim SE User’s Manual

SystemC: instantiating Verilog UM-213
// Connect ports
 chip->clock(iclock);
 ...

...
 }

 ~test_ringbuf()
 {
 delete chip;
 }
};

#endif

// test_ringbuf.cpp
#include "test_ringbuf.h"

SC_MODULE_EXPORT(test_ringbuf);

--

// ringbuf.v

`timescale 1ns / 1ns

module ringbuf (clock, reset, txda, rxda, txc, outstrobe);

 // Design Parameters Control Complete Design
 parameter int_param = 0;
 parameter real_param = 2.9;
 parameter str_param = "Error";

 // Define the I/O names
 input clock, txda, reset ;
 ...

 initial begin
 $display("int_param=%0d", int_param);
 $display("real_param=%g", real_param);
 $display("str_param=%s", str_param);
 end

endmodule

To run the simulation, use the following commands:

vsim1> vlib work
vsim2> vlog ringbuf.v
vsim3> scgenmod ringbuf > ringbuf.h
vsim4> sccom test_ringbuf.cpp
vsim5> sccom -link
vsim6> vsim -c test_ringbuf

The simulation returns:

int_param=4
real_param=2.6
str_param=Hello
ModelSim SE User’s Manual

UM-214 7 - Mixed-language simulation

Model
Verilog: instantiating SystemC

You can reference a SystemC module from Verilog as though the design unit is a module
of the same name.

SystemC instantiation criteria

A SystemC module can be instantiated in Verilog if it meets the following criteria:

• SystemC module names are case sensitive. The module name at the SystemC
instantiation site must match exactly with the actual SystemC module name.

• SystemC modules are exported using the SC_MODULE_EXPORT macro. See
"Exporting SystemC modules" (UM-214).

• The module ports are as listed in the table shown in "Channel and Port type mapping"
(UM-196).

• Port data type mapping must match exactly. See the table in "Data type mapping" (UM-

197).

Port associations may be named or positional. Use the same port names and port positions
that appear in the SystemC module declaration. Named port associations are case sensitive.

Parameter support is available as of the ModelSim 6.0 release. See "Parameter support for
Verilog instantiating SystemC" (UM-214).

Exporting SystemC modules

To be able to instantiate a SystemC module from Verilog (or use a SystemC module as a
top level module), the module must be exported.

Assume a SystemC module named transceiver exists, and that it is declared in header file
transceiver.h. Then the module is exported by placing the following code in a .cpp file:

#include "transceiver.h"

SC_MODULE_EXPORT(transceiver);

Parameter support for Verilog instantiating SystemC

Passing parameters from Verilog to SystemC

To pass actual parameter values, simply use the native Verilog parameter override syntax.
Parameters are passed to SystemC via the module instance parameter value list.

In addition to int, real, and string, ModelSim supports parameters with a bit range.

Named parameter association must be used for all Verilog modules that instantiate
SystemC.

Retrieving parameter values

To retrieve parameter override information from Verilog, you can use the following
functions:

void sc_get_param(const char* param_name, int& param_value);
void sc_get_param(const char* param_name, double& param_value);
void sc_get_param(const char* param_name, sc_string& param_value, char
Sim SE User’s Manual

Verilog: instantiating SystemC UM-215
format_char = 'a');

The first argument to sc_get_param defines the parameter name, the second defines the
parameter value. For retrieving string values, ModelSim also provides a third optional
argument, format_char. It is used to specify the format for displaying the retrieved string.
The format can be ASCII ("a" or "A"), binary ("b" or "b"), decimal ("d" or "d"), octal ("o"
or "O"), or hexadecimal ("h" or "H"). ASCII is the default.

Alternatively, you can use the following forms of the above functions in the constructor
initializer list:

int sc_get_int_param(const char* param_name);
double sc_get_real_param(const char* param_name);
sc_string sc_get_string_param(const char* param_name, char format_char =
'a');

Example of parameter use

Here is a complete example, ring buffer, including all files necessary for simulation.

// test_ringbuf.v

`timescale 1ns / 1ps
module test_ringbuf();
 reg clock;

...
parameter int_param = 4;

 parameter real_param = 2.6;
 parameter str_param = "Hello World";
 parameter [7:0] reg_param = 'b001100xz;

 // Instantiate SystemC module
 ringbuf #(.int_param(int_param),
 .real_param(real_param),
 .str_param(str_param),
 .reg_param(reg_param))
 chip(.clock(clock),

...

... };
endmodule

// ringbuf.h
#ifndef INCLUDED_RINGBUF
#define INCLUDED_RINGBUF

#include
SC_MODULE(ringbuf)
{
public:
 // Module ports
 sc_in clock;
 ...

...

 SC_CTOR(ringbuf)
 : clock("clock"),
 ...

...
ModelSim SE User’s Manual

UM-216 7 - Mixed-language simulation

Model
{
cout << "int_param="

<< sc_get_int_param("int_param") << endl;
cout << "real_param="

<< sc_get_real_param("real_param") << endl;
cout << "str_param="

<< (const char*)sc_get_string_param("str_param", 'a')
<< endl;

cout << "reg_param="
<< (const char*)sc_get_string_param("reg_param", 'b')
<< endl;

 }

 ~ringbuf() {}
};

#endif

// ringbuf.cpp
#include "ringbuf.h"

SC_MODULE_EXPORT(ringbuf);

To run the simulation, you would enter the following commands:

vsim1> vlib work
vsim1> sccom ringbuf.cpp
vsim1> vlog test_ringbuf.v
vsim1> sccom -link
vsim1> vsim test_ringbuf

The simulation would return the following:

int_param=4
real_param=2.6
str_param=Hello World
reg_param=001100xz
Sim SE User’s Manual

SystemC: instantiating VHDL UM-217
SystemC: instantiating VHDL

To instantiate VHDL design units into a SystemC design, you must first generate a
SystemC foreign module declaration (UM-209) for each VHDL design unit you want to
instantiate. Once you have generated the foreign module declaration, you can instantiate
the foreign module just like any other SystemC module.

VHDL instantiation criteria

A VHDL design unit may be instantiated from SystemC if it meets the following criteria:

• The design unit is an entity/architecture pair or a configuration.

• The entity ports are of type bit, bit_vector, std_ulogic, std_ulogic_vector, or their
subtypes. The port clause may have any mix of these types.

Port associations may be named or positional. Use the same port names and port positions
that appear in the entity.

SystemC foreign module declaration

In cases where you want to run a mixed simulation with SystemC and VHDL, you must
create and declare a foreign module that stands in for each VHDL design unit instantiated
under SystemC. The foreign modules can be created in one of two ways:

• running scgenmod, a utility that automatically generates your foreign module declaration
(much like vgencomp generates a component declaration)

• modifying your SystemC source code manually

Using scgenmod

After you have analyzed the design, you can generate a foreign module declaration with an
scgenmod command similar to the following:

scgenmod mod1

Where mod1 is a VHDL entity. A foreign module declaration for the specified entity is
written to stdout.

Guidelines for manual creation

Apply the following guidelines to the creation of foreign modules. A foreign module:

• contains ports corresponding to VHDL ports. These ports must be explicitly named in the
foreign module’s constructor initializer list.

• must not contain any internal design elements such as child instances, primitive channels,
or processes.

• must pass a secondary constructor argument denoting the module’s HDL name to the
sc_foreign_module base class constructor. For VHDL, the HDL name can be in the
format [<lib>.]<primary>[(<secondary>)] or [<lib>.]<conf>.

• generics are supported for VHDL instantiations in SystemC designs. See "Generic
support for SystemC instantiating VHDL" (UM-218) for more information.
ModelSim SE User’s Manual

UM-218 7 - Mixed-language simulation

Model
Example

A sample VHDL design unit to be instantiated in a SystemC design is:

entity counter is
port (count : buffer bit_vector(8 downto 1);

clk : in bit;
reset : in bit);

end;

architecture only of counter is
...
...

end only;

The SystemC foreign module declaration for the above VHDL module is:

class counter : public sc_foreign_module {
public:

sc_in<bool> clk;
sc_in<bool> reset;
sc_out<sc_logic> count;

counter(sc_module_name nm)
: sc_foreign_module(nm, "work.counter(only)"),
clk("clk"),
reset("reset"),
count("count")
{}

};

The VHDL module is then instantiated in the SystemC source as follows:

counter dut("dut");

where the constructor argument (dut) is the VHDL instance name.

Generic support for SystemC instantiating VHDL

Since the SystemC language has no concept of generics, generic values must be passed
from a SystemC parent to an HDL child through the SystemC foreign module
(sc_foreign_module). See "SystemC foreign module declaration" (UM-209) for information
regarding the creation of sc_foreign_module.

Generic parameters in sc_foreign_module constructor

To instantiate a VHDL entity containing generics into the SystemC design, you must pass
two parameters to the sc_foreign_module constructor: the number of generics (int
num_generics), and the generic list (const char* generics_list). The generic_list is listed as
an array of const char*.

If you create your foreign module manually (see "Guidelines for manual creation" (UM-

210)), you must also pass the generic information to the sc_foreign_module constructor. If
you use scgenmod to create the foreign module declaration, the generic information is
detected in the HDL child and is incorporated automatically.
Sim SE User’s Manual

SystemC: instantiating VHDL UM-219
Example

Following the example shown above (UM-218), let’s see the generic information that would
be passed to the SystemC foreign module declaration. The generic parameters passed to the
constructor are shown in magenta color:

class counter : public sc_foreign_module {
public:

sc_in<bool> clk;
...

counter(sc_midule_name nm, char* hdl_name
int num_generics, const char* generic_list)

: sc_foreign_module(nm, hdl_name, num_generics,
generic_list),

{}
};

The instantiation is:

dut = new counter ("dut", "work.counter", 9, generic_list);

Example of generic use

Here is another example, a ring buffer, complete with all files necessary for the simulation.

// ringbuf.h
#ifndef INCLUDED_RINGBUF
#define INCLUDED_RINGBUF

class ringbuf : public sc_foreign_module {
public:

sc_in<bool> clk;
...

counter(sc_midule_name nm, char* hdl_name
int num_generics, const char* generic_list)

: sc_foreign_module(nm, hdl_name, num_generics,
generic_list),

{}
};

#endif

// test_ringbuf.h
#ifndef INCLUDED_TEST_RINGBUF
#define INCLUDED_TEST_RINGBUF

#include "ringbuf.h"

SC_MODULE(test_ringbuf)
{
 sc_signal<T> iclock;
 ...

...
ModelSim SE User’s Manual

UM-220 7 - Mixed-language simulation

Model
 // VHDL module instance
 ringbuf* chip;

 SC_CTOR(test_ringbuf)
 : iclock("iclock"),
 ...

...
{

 const char* generic_list[9];

 generic_list[0] = strdup("int_param=4");
 generic_list[1] = strdup("real_param=2.6");
 generic_list[2] = strdup("str_param=\"Hello\"");
 generic_list[3] = strdup("bool_param=false");
 generic_list[4] = strdup("char_param=Y");
 generic_list[5] = strdup("bit_param=0");
 generic_list[6] = strdup("bv_param=010");
 generic_list[7] = strdup("logic_param=Z");
 generic_list[8] = strdup("lv_param=01XZ");

// Cleanup the memory allocated for the generic list
for (int = 0; i < 9; i++;)

free((char*)generic_list[i]);

// Create VHDL module instance.
 chip = new ringbuf("chip", "ringbuf", 9, generic_list);

};

#endif

-- test_ringbuf.cpp

#include "test_ringbuf.h"

SC_MODULE_EXPORT(test_ringbuf);

-- ringbuf.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE std.textio.all;

ENTITY ringbuf IS
 generic (
 int_param : integer;
 real_param : real;
 str_param : string;
 bool_param : boolean;
 char_param : character;
 bit_param : bit;
 bv_param : bit_vector(0 to 2);
 logic_param : std_logic;
 lv_param : std_logic_vector(3 downto 0));
 PORT (
 clock : IN std_logic;

..

...
Sim SE User’s Manual

SystemC: instantiating VHDL UM-221
);

END ringbuf;

ARCHITECTURE RTL OF ringbuf IS

BEGIN
 print_param: PROCESS
 variable line_out: Line;
 BEGIN
 write(line_out, string'("int_param="), left);
 write(line_out, int_param);
 writeline(OUTPUT, line_out);
 write(line_out, string'("real_param="), left);
 write(line_out, real_param);
 writeline(OUTPUT, line_out);
 write(line_out, string'("str_param="), left);
 write(line_out, str_param);
 writeline(OUTPUT, line_out);
 write(line_out, string'("bool_param="), left);
 write(line_out, bool_param);
 writeline(OUTPUT, line_out);
 write(line_out, string'("char_param="), left);
 write(line_out, char_param);
 writeline(OUTPUT, line_out);
 write(line_out, string'("bit_param="), left);
 write(line_out, bit_param);
 writeline(OUTPUT, line_out);
 write(line_out, string'("bv_param="), left);
 write(line_out, bv_param);
 writeline(OUTPUT, line_out);
 WAIT FOR 20 NS;
 END PROCESS;
END RTL;

To run the parameterized design, use the following commands.

vsim1> vlib work
vsim2> vcom ringbuf.vhd
vsim3> scgenmod ringbuf > ringbuf.h //creates the sc_foreign_module

including generic mapping info
vsim4> sccom test_ringbuf.cpp
vsim5> sccom -link
vsim6> vsim -c test_ringbuf

The simulation returns the following:

int_param=4
real_param=2.600000e+00
str_param=Hello
bool_param=FALSE
char_param=Y
bit_param=0
bv_param=010
ModelSim SE User’s Manual

UM-222 7 - Mixed-language simulation

Model
VHDL: instantiating SystemC

To instantiate SystemC in a VHDL design, you must create a component declaration for the
SystemC module. Once you have generated the component declaration, you can instantiate
the SystemC component just like any other VHDL component.

SystemC instantiation criteria

A SystemC design unit may be instantiated within VHDL if it meets the following criteria:

• SystemC module names are case sensitive. The module name at the SystemC
instantiation site must match exactly with the actual SystemC module name.

• The SystemC design unit is exported using the SC_MODULE_EXPORT macro.

• The module ports are as listed in the table in "Data type mapping" (UM-200)

• Port data type mapping must match exactly. See the table in "Port type mapping" (UM-

200).

Port associations may be named or positional. Use the same port names and port positions
that appear in the SystemC module. Named port associations are case sensitive.

Component declaration

A SystemC design unit can be referenced from a VHDL design as though it is a VHDL
entity. The interface to the design unit can be extracted from the library in the form of a
component declaration by running vgencomp. Given a library and a SystemC module
name, vgencomp writes a component declaration to standard output.

The default component port types are:

• std_logic

• std_logic_vector

Optionally, you can choose:

• bit and bit_vector

VHDL and SystemC identifiers

The VHDL identifiers for the component name and port names are the same as the SystemC
identifiers for the module name and port names. If a SystemC identifier is not a valid
VHDL 1076-1987 identifier, it is converted to a VHDL 1076-1993 extended identifier (in
which case you must compile the VHDL with the -93 or later switch).

Examples

SystemC identifier VHDL identifier

topmod topmod

TOPMOD topmod

TopMod topmod

top_mod top_mod
Sim SE User’s Manual

VHDL: instantiating SystemC UM-223
vgencomp component declaration

vgencomp (CR-330) generates a component declaration according to these rules:

Port clause

A port clause is generated if the module has ports. A corresponding VHDL port is defined
for each named SystemC port.

You can set the VHDL port type to bit or std_logic. If the SystemC port has a range, then
the VHDL port type is bit_vector or std_logic_vector.

Examples

Configuration declarations are allowed to reference SystemC modules in the entity aspects
of component configurations. However, the configuration declaration cannot extend into a
SystemC instance to configure the instantiations within the SystemC module.

Exporting SystemC modules

To be able to instantiate a SystemC module within VHDL (or use a SystemC module as a
top level module), the module must be exported.

Assume a SystemC module named transceiver exists, and that it is declared in header file
transceiver.h. Then the module is exported by placing the following code in a .cpp file:

#include "transceiver.h"

SC_MODULE_EXPORT(transceiver);

sccom -link

The sccom -link command collects the object files created in the work library, and uses
them to build a shared library (.so) in the current work library. If you have changed your
SystemC source code and recompiled it using sccom, then you must run sccom -link before
invoking vsim. Otherwise your changes to the code are not recognized by the simulator.

Generic support for VHDL instantiating SystemC

Support for generics is available in a workaround flow for the current release. For
workaround flow details, please refer to systemc_generics.note located in the
<install_dir>/modeltech/docs/technotes directory.

_topmod _topmod\

SystemC identifier VHDL identifier

SystemC port VHDL port

sc_in<sc_logic>p1; p1 : in std_logic;

sc_out<sc_lv<8>>p2; p2 : out std_logic_vector(7 downto 0);

sc_inout<sc_lv<8>>p3; p3 : inout std_logic_vector(7 downto 0)
ModelSim SE User’s Manual

UM-224 7 - Mixed-language simulation

Model
Sim SE User’s Manual

 UM-225
8 - WLF files (datasets) and virtuals

Chapter contents
WLF files (datasets) UM-226

Saving a simulation to a WLF file UM-227
Opening datasets UM-227
Viewing dataset structure UM-228
Managing multiple datasets UM-229
Saving at intervals with Dataset Snapshot UM-231
Collapsing time and delta steps UM-232

Virtual Objects (User-defined buses, and more) UM-233
Virtual signals UM-233
Virtual functions UM-234
Virtual regions UM-235
Virtual types UM-235

A ModelSim simulation can be saved to a wave log format (WLF) file for future viewing
or comparison to a current simulation. We use the term "dataset" to refer to a WLF file that
has been reopened for viewing.

You can open more than one WLF file for simultaneous viewing. You can also create
virtual signals that are simple logical combinations of, or logical functions of, signals from
different datasets.
ModelSim SE User’s Manual

UM-226 8 - WLF files (datasets) and virtuals

Model
WLF files (datasets)

Wave Log Format (WLF) files are recordings of simulation runs. The WLF file is written
as an archive file in binary format and is used to drive the List and Wave windows at a later
time. The files contain data from logged objects (e.g., signals and variables) and the design
hierarchy in which the logged objects are found. You can record the entire design or choose
specific objects.

The WLF file provides you with precise in-simulation and post-simulation debugging
capability. Any number of WLF files can be reloaded for viewing or comparing to the
active simulation.

A dataset is a previously recorded simulation that has been loaded into ModelSim. Each
dataset has a logical name to let you indicate the dataset to which any command applies.
This logical name is displayed as a prefix. The current, active simulation is prefixed by
"sim:", while any other datasets are prefixed by the name of the WLF file by default.

Two datasets are displayed in the Wave window below. The current simulation is shown in
the top pane and is indicated by the "sim" prefix. A dataset from a previous simulation is
shown in the bottom pane and is indicated by the "gold" prefix.

The simulator resolution (see "Simulator resolution limit" (UM-129) or (UM-78)) must be the
same for all datasets you’re comparing, including the current simulation. If you have a
WLF file that is in a different resolution, you can use the wlfman command (CR-416) to
change it.
Sim SE User’s Manual

WLF files (datasets) UM-227
Saving a simulation to a WLF file

If you add objects to the Dataflow, List, or Wave windows, or log objects with the log
command, the results of each simulation run are automatically saved to a WLF file called
vsim.wlf in the current directory. If you run a new simulation in the same directory, the
vsim.wlf file is overwritten with the new results.

If you want to save the WLF file and not have it be overwritten, select the dataset tab in the
Workspace and then select File > Save. Or, you can use the -wlf <filename> argument to
the vsim command (CR-373) or the dataset save command (CR-143).

Opening datasets

To open a dataset, do one of the following:

• Select File > Open and choose Log Files or use the dataset open command (CR-141).

The Open Dataset dialog includes the following options.
• Dataset Pathname

Identifies the path and filename of the WLF file you want to open.

• Logical Name for Dataset
This is the name by which the dataset will be referred. By default this is the name of the
WLF file.

Important: If you do not use dataset save or dataset snapshot, you must end a
simulation session with a quit or quit -sim command in order to produce a valid WLF
file. If you don’t end the simulation in this manner, the WLF file will not close properly,
and ModelSim may issue the error message "bad magic number" when you try to open
an incomplete dataset in subsequent sessions. If you end up with a "damaged" WLF file,
you can try to "repair" it using the wlfrecover command (CR-420).
ModelSim SE User’s Manual

UM-228 8 - WLF files (datasets) and virtuals

Model
Viewing dataset structure

Each dataset you open creates a structure tab in the Main window workspace. The tab is
labeled with the name of the dataset and displays a hierarchy of the design units in that
dataset.

The graphic below shows three structure tabs: one for the active simulation (sim) and one
each for two datasets (test and gold).

If you have too many tabs to display in the available space, you can scroll the tabs left or
right by clicking the arrow icons at the bottom right-hand corner of the window.

Structure tab columns

Each structure tab displays four columns by default:

Column name Description

Instance the name of the instance

Design unit the name of the design unit

Design unit type the type (e.g., Module, Entity, etc.) of the design unit

Visibility the current visibility of the object as it relates to design
optimization; see "Enabling design object visibility with
the +acc option" (UM-126) for more information

Click here to
scroll tabs
Sim SE User’s Manual

WLF files (datasets) UM-229
Aside from the four columns listed above, there are numerous other columns related to code
coverage that can be displayed in structure tabs. You can hide or show columns by right-
clicking a column name and selecting the name on the list. See "Workspace pane" (GR-116)
for more details.

Managing multiple datasets

GUI

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets.

See "Dataset Browser dialog" (GR-49) for details on this dialog.

Command line

You can open multiple datasets when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLF file. You can specify a different dataset name as an optional qualifier to the
vsim -view switch on the command line using the following syntax:

-view <dataset>=<filename>

For example: vsim -view foo=vsim.wlf

ModelSim designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixes to that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select a design unit in a dataset’s structure
tab, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-161) to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using
the dataset name as a prefix in the path. For example:

sim:/top/alu/out
ModelSim SE User’s Manual

UM-230 8 - WLF files (datasets) and virtuals

Model
view:/top/alu/out

golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer
to something outside the active dataset. When more than one dataset is open, ModelSim
will automatically prefix names in the Wave and List windows with the dataset name. You
can change this default by selecting Tools > Window Preferences (Wave and List
windows).

ModelSim also remembers a "current context" within each open dataset. You can toggle
between the current context of each dataset using the environment command (CR-161),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context") is
used for finding objects specified without a path.

The Objects pane can be locked to a specific context of a dataset. Being locked to a dataset
means that the pane will update only when the content of that dataset changes. If locked to
both a dataset and a context (e.g., test: /top/foo), the pane will update only when that
specific context changes. You specify the dataset to which the pane is locked by selecting
File > Environment.

Restricting the dataset prefix display

The default for dataset prefix viewing is set with a variable in pref.tcl,
PrefMain(DisplayDatasetPrefix). Setting the variable to 1 will display the prefix, setting
it to 0 will not. It is set to 1 by default. Either edit the pref.tcl file directly or use the Tools
> Edit Preferences command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-161) with the -dataset option (you won’t need to specify this option if the
variable noted above is set to 1). The environment command line switches override the
pref.tcl variable.
Sim SE User’s Manual

WLF files (datasets) UM-231
Saving at intervals with Dataset Snapshot

Dataset Snapshot lets you periodically copy data from the current simulation WLF file to
another file. This is useful for taking periodic "snapshots" of your simulation or for clearing
the current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate objects, select Tools > Dataset Snapshot (Wave
window).

See "Dataset Snapshot dialog" (GR-251) for details on this dialog.
ModelSim SE User’s Manual

UM-232 8 - WLF files (datasets) and virtuals

Model
Collapsing time and delta steps

By default ModelSim collapses delta steps. This means each logged signal that has events
during a simulation delta has its final value recorded to the WLF file when the delta has
expired. The event order in the WLF file matches the order of the first events of each signal.

You can configure how ModelSim collapses time and delta steps using arguments to the
vsim command (CR-373) or by setting the WLFCollapseMode (UM-534) variable in the
modelsim.ini file. The table below summarizes the arguments and how they affect event
recording.

When a run completes that includes single stepping or hitting a breakpoint, all events are
flushed to the WLF file regardless of the time collapse mode. It’s possible that single
stepping through part of a simulation may yield a slightly different WLF file than just
running over that piece of code. If particular detail is required in debugging, you should
disable time collapsing.

vsim argument effect modelsim.ini setting

-wlfnocollapse All events for each logged signal are recorded to the
WLF file in the exact order they occur in the
simulation.

WLFCollapseMode = 0

-wlfdeltacollapse Each logged signal which has events during a
simulation delta has its final value recorded to the
WLF file when the delta has expired. Default.

WLFCollapseMode = 1

-wlftimecollapse Same as delta collapsing but at the timestep
granularity.

WLFCollapseMode = 2
Sim SE User’s Manual

Virtual Objects (User-defined buses, and more) UM-233
Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the ModelSim simulation kernel. ModelSim supports the following kinds of virtual objects:

• Virtual signals (UM-233)

• Virtual functions (UM-234)

• Virtual regions (UM-235)

• Virtual types (UM-235)

Virtual objects are indicated by an orange diamond as illustrated by bus below:

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the WLF
file by the simulation kernel. They can be displayed in the Objects, List, and Wave
windows, accessed by the examine command, and set using the force command. You can
create virtual signals using the Tools > Combine Signals (Wave and List windows)
command or use the virtual signal command (CR-351). Once created, virtual signals can be
dragged and dropped from the Objects pane to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that
corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command has an -install <region> option to specify where the virtual signal
should be installed. This can be used to install the virtual signal in a user-defined region in
ModelSim SE User’s Manual

UM-234 8 - WLF files (datasets) and virtuals

Model
order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command (CR-342) can be used to hide the display of the
broken-down bits if you don't want them cluttering up the Objects pane.

If the virtual signal has elements from more than one WLF file, it will be automatically
installed in the virtual region virtuals:/Signals.

Virtual signals are not hierarchical – if two virtual signals are concatenated to become a
third virtual signal, the resulting virtual signal will be a concatenation of all the scalar
elements of the first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-349). By default, when quitting, ModelSim will append any newly-created virtuals (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. There is one exception: "implicit virtuals" are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

An implicit virtual is a virtual signal that was automatically created by ModelSim without
your knowledge and without you providing a name for it. An example would be if you
expand a bus in the Wave window, then drag one bit out of the bus to display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Objects pane or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Objects,
Wave, and List windows and accessed by the examine command (CR-162), but cannot be
set by the force command (CR-180).

Examples of virtual functions include the following:

• a function defined as the inverse of a given signal

• a function defined as the exclusive-OR of two signals

• a function defined as a repetitive clock

• a function defined as "the rising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

The result type of a virtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net
strengths are ignored.
Sim SE User’s Manual

Virtual Objects (User-defined buses, and more) UM-235
Virtual functions can be created using the virtual function command (CR-339).

Virtual functions are also implicitly created by ModelSim when referencing bit-selects or
part-selects of Verilog registers in the GUI, or when expanding Verilog registers in the
Objects, Wave, or List window. This is necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

Virtual regions

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
a gate-level design and to locate virtual signals. Thus, virtual signals and virtual regions can
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-348).

Virtual types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in a type conversion
expression to convert a signal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-354).
ModelSim SE User’s Manual

UM-236 8 - WLF files (datasets) and virtuals

Model
Sim SE User’s Manual

 UM-237
9 - Waveform analysis

Chapter contents
Introduction UM-239

Objects you can view UM-239

Wave window overview UM-240

List window overview UM-240

Adding objects to the Wave or List window UM-244

Measuring time with cursors in the Wave window UM-245
Working with cursors UM-245
Understanding cursor behavior UM-246
Jumping to a signal transition UM-247

Setting time markers in the List window UM-248
Working with markers UM-248

Zooming the Wave window display UM-249
Saving zoom range and scroll position with bookmarks . . . UM-250

Searching in the Wave and List windows UM-251
Finding signal names UM-251
Searching for values or transitions UM-252
Using the Expression Builder for expression searches . . . UM-253

Formatting the Wave window UM-255
Setting Wave window display properties UM-255
Formatting objects in the Wave window UM-255
Changing radix (base) UM-259
Dividing the Wave window UM-256
Splitting Wave window panes. UM-257

Formatting the List window UM-259
Setting List window display properties UM-259
Formatting objects in the List window UM-259

Saving the window format UM-261

Printing and saving waveforms in the Wave window UM-262
Saving a .eps file and printing under UNIX UM-262
Printing on Windows platforms UM-262
Printer page setup UM-262

Saving List window data to a file UM-263

Combining objects/creating busses UM-264
Example UM-264

Configuring new line triggering in the List window UM-265
Using gating expressions to control triggering UM-266
Sampling signals at a clock change UM-268
ModelSim SE User’s Manual

UM-238 9 - Waveform analysis

Model
Miscellaneous tasks UM-269
Examining waveform values UM-269
Displaying drivers of the selected waveform UM-269
Setting signal breakpoints in the Wave window UM-269
Examining waveform values UM-269

Waveform Compare UM-269
Three options for setting up a comparison UM-270
Setting up a comparison with the GUI UM-271
Starting a waveform comparison UM-272
Adding signals, regions, and clocks UM-274
Specifying the comparison method UM-276
Setting compare options UM-278
Viewing differences in the Wave window UM-279
Viewing differences in the List window UM-281
Viewing differences in textual format UM-282
Saving and reloading comparison results UM-282
Comparing hierarchical and flattened designs UM-283
Sim SE User’s Manual

Introduction UM-239
Introduction

When your simulation finishes, you will often want to analyze waveforms to assess and
debug your design. Designers typically use the Wave window for waveform analysis.
However, you can also look at waveform data in a textual format in the List window.

To analyze waveforms in ModelSim, follow these steps:

1 Compile your files.

2 Load your design.

3 Add objects to the Wave or List window.

add wave <object_name>
add list <object_name>

4 Run the design.

Objects you can view

The list below identifies the types of objects can be viewed in the Wave or List window.

VHDL objects

(indicated by dark blue diamond in the Wave window)
signals, aliases, process variables, and shared variables

Verilog objects

(indicated by light blue diamond in the Wave window)
nets, registers, variables, and named events

SystemC objects

(indicated by a green diamond in the Wave window)
primitive channels and ports

Virtual objects

(indicated by an orange diamond in the Wave window)
virtual signals, buses, and functions, see; "Virtual Objects (User-defined buses, and more)"
(UM-233) for more information

Comparisons

(indicated by a yellow triangle)
comparison regions and comparison signals; see Waveform Compare (UM-270) for more
information

Assertions

(indicated by a magenta triangle or arrowhead in the Wave window)
PSL assertions
ModelSim SE User’s Manual

UM-240 9 - Waveform analysis

Model
Wave window overview

The Wave window opens by default in the MDI frame of the Main window as shown
below. The window can be undocked from the main window by pressing the Undock button
in the window header or by using the view -undock wave command. The preference
variable PrefWave(ViewUnDocked) can be used to control this default behavior. By
setting the value of this variable to 1, the Wave Window will open undocked.

Undock button
Sim SE User’s Manual

Wave window overview UM-241
Here is an example of a Wave window that is undocked from the MDI frame. All menus
and icons associated with Wave window functions now appear in the menu and toolbar
areas of the Wave window.

If the Wave window is docked into the Main window MDI frame, all menus and icons that
were in the standalone version of the Wave window move into the Main window menu bar
and toolbar. See "Main window menu bar" (GR-20) for more information.

Undock button

Dock button
ModelSim SE User’s Manual

UM-242 9 - Waveform analysis

Model
The Wave window is divided into a number of window panes. All window panes in the
Wave window can be resized by clicking and dragging the bar between any two panes.

pathnames values waveforms

cursorscursors names and values
Sim SE User’s Manual

List window overview UM-243
List window overview

The List window displays simulation results in tabular format. Common tasks that people
use the window for include:

• Using gating expressions and trigger settings to focus in on particular signals or events.
See "Configuring new line triggering in the List window" (UM-265).

• Debugging delta delay issues. See "Delta delays" (UM-80) for more information.

The window is divided into two adjustable panes, which allows you to scroll horizontally
through the listing on the right, while keeping time and delta visible on the left.
ModelSim SE User’s Manual

UM-244 9 - Waveform analysis

Model
Adding objects to the Wave or List window

You can add objects to the Wave or List window in several ways.

Adding objects with drag and drop

You can drag and drop objects into the Wave or List window from the Workspace, Active
Processes, Memory, Objects, Source, or Locals panes. You can also drag objects from the
Wave window to the List window and vice versa.

Select the objects in the first window, then drop them into the Wave window. Depending
on what you select, all objects or any portion of the design can be added.

Adding objects with a menu command

The Add menu in the Main windows let you add objects to the Wave window, List window,
or Log file.

Adding objects with a command

Use the add list command (CR-48) or add wave command (CR-52) to add objects from the
command line. For example:

VSIM> add wave /proc/a

Adds signal /proc/a to the Wave window.

VSIM> add list *

Adds all the objects in the current region to the List window.

VSIM> add wave -r /*

Adds all objects in the design to the Wave window.

Adding objects with a window format file

Select File > Open > Format and specify a previously saved format file. See "Saving the
window format" (UM-261) for details on how to create a format file.
Sim SE User’s Manual

Measuring time with cursors in the Wave window UM-245
Measuring time with cursors in the Wave window

ModelSim uses cursors to measure time in the Wave window. Cursors extend a vertical line
over the waveform display and identify a specific simulation time. Multiple cursors can be
used to measure time intervals, as shown in the graphic below.

When the Wave window is first drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. The selected
cursor is drawn as a bold solid line; all other cursors are drawn with thin lines.

As shown in the graphic below, three window panes relate to cursors: the cursor name pane
on the bottom left, the cursor value pane in the bottom middle, and the cursor pane with
horizontal "tracks" on the bottom right.

Working with cursors

The table below summarizes common cursor actions.

interval measurementright-click here to
name a cursor

locked cursor is red

cursor value pane

Action Menu command Toolbar button

Add cursor Insert > Cursor
ModelSim SE User’s Manual

UM-246 9 - Waveform analysis

Model
Shortcuts for working with cursors

There are a number of useful keyboard and mouse shortcuts related to the actions listed
above:

• Select a cursor by clicking the cursor name.

• Jump to a "hidden" cursor (one that is out of view) by double-clicking the cursor name.

• Name a cursor by right-clicking the cursor name and entering a new value. Press <Enter>
after you have typed the new name.

• Move a locked cursor by holding down the <shift> key and then clicking-and-dragging
the cursor.

• Move a cursor to a particular time by right-clicking the cursor value and typing the value
to which you want to scroll. Press <Enter> after you have typed the new value.

Understanding cursor behavior

The following list describes how cursors "behave" when you click in various panes of the
Wave window:

• If you click in the waveform pane, the cursor closest to the mouse position is selected and
then moved to the mouse position.

• Clicking in a horizontal "track" in the cursor pane selects that cursor and moves it to the
mouse position.

• Cursors "snap" to a waveform edge if you click or drag a cursor along the selected
waveform to within ten pixels of a waveform edge. You can set the snap distance in the
Window Preferences dialog. Select Tools > Options > Wave Preferences when the
Wave window is docked in the Main window MDI frame. Select Tools > Window
Preferences when the Wave window is a stand-alone, undocked window.

• You can position a cursor without snapping by dragging in the cursor pane below the
waveforms.

Delete cursor Edit > Delete Cursor

Lock cursor Edit > Edit Cursor NA

Name cursor Edit > Edit Cursor NA

Select cursor View > Cursors NA

Action Menu command Toolbar button
Sim SE User’s Manual

Measuring time with cursors in the Wave window UM-247
Jumping to a signal transition

You can move the active cursor to the next or previous transition on the selected signal
using these two buttons on the toolbar:

Find Previous
Transition
locate the previous signal
value change for the
selected signal

Find Next Transition
locate the next signal
value change for the
selected signal
ModelSim SE User’s Manual

UM-248 9 - Waveform analysis

Model
Setting time markers in the List window

Time markers in the List window are similar to cursors in the Wave window. Time markers
tag lines in the data table so you can quickly jump back to that time. Markers are indicated
by a thin box surrounding the marked line.

Working with markers

The table below summarizes actions you can take with markers.

Action Method

Add marker Select a line and then select Edit > Add Marker

Delete marker Select a tagged line and then select Edit > Delete Marker

Goto marker Select View > Goto > <time>
Sim SE User’s Manual

Zooming the Wave window display UM-249
Zooming the Wave window display

Zooming lets you change the simulation range in the waveform pane. You can zoom using
the context menu, toolbar buttons, mouse, keyboard, or commands.

Zooming with menu commands

You can access Zoom commands from the View menu on the toolbar or by clicking the
right mouse button in the waveform pane.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zooming with the mouse

To zoom with the mouse, first enter zoom mode by selecting View > Mouse Mode > Zoom
Mode. The left mouse button then offers 3 zoom options by clicking and dragging in
different directions:

• Down-Right or Down-Left: Zoom Area (In)

• Up-Right: Zoom Out

• Up-Left: Zoom Fit

Also note the following about zooming with the mouse:

• The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

• You can enter zoom mode temporarily by holding the <Ctrl> key down while in select
mode.

• With the mouse in the Select Mode, the middle mouse button will perform the above
zoom operations.

Zoom In 2x
zoom in by a factor of two
from the current view

Zoom Out 2x
zoom out by a factor of
two from current view

Zoom Full
zoom out to view the full
range of the simulation
from time 0 to the current
time

Zoom Mode
change mouse pointer to
zoom mode; see below
ModelSim SE User’s Manual

UM-250 9 - Waveform analysis

Model
Saving zoom range and scroll position with bookmarks

Bookmarks save a particular zoom range and scroll position. This lets you return easily to
a specific view later. You save the bookmark with a name and then access the named
bookmark from the Bookmark menu. Bookmarks are saved in the Wave format file (see
"Adding objects with a window format file" (UM-244)) and are restored when the format file
is read.

Managing bookmarks

The table below summarizes actions you can take with bookmarks.

Adding bookmarks

To add a bookmark, follow these steps:

1 Zoom the wave window as you see fit using one of the techniques discussed in "Zooming
the Wave window display" (UM-249).

2 Select Edit > Insert Bookmark.

3 Give the bookmark a name and click OK.

Editing Bookmarks

Once a bookmark exists, you can change its properties by selecting Tools > Bookmarks.
See "Modify Breakpoints dialog" (GR-249) for more details.

Action Menu Command

Add bookmark Edit > Insert Bookmark bookmark add wave (CR-71)

View bookmark View > Bookmark > <name> bookmark goto wave (CR-73)

Delete bookmark Tools > Bookmarks bookmark delete wave (CR-72)
Sim SE User’s Manual

Searching in the Wave and List windows UM-251
Searching in the Wave and List windows

The Wave and List windows provide two methods for locating objects:

• Finding signal names – Select Edit > Find or use the find command (CR-176) to search
for the name of a signal.

• Search for values or transitions – Select Edit > Search or use the search command (CR-

260) to locate transitions or signal values. The search feature is not available in all
versions of ModelSim.

Finding signal names

The Find command is used primarily to locate a signal name in the Wave or List window.
When you select Edit > Find, the Find dialog appears:

The Find dialog gives various options that are discussed further under "Find in .wave
dialog" (GR-233). One option of note is the "Exact" checkbox. Check Exact if you only want
to find objects that match your search exactly. For example, searching for "clk" without
Exact will find /top/clk and clk1.

There are two differences between the Wave and List windows as it relates to the Find
feature:

• In the Wave window you can specify a value to search for in the values pane.

• The find operation works only within the active pane in the Wave window.
ModelSim SE User’s Manual

UM-252 9 - Waveform analysis

Model
Searching for values or transitions

Available in some versions of ModelSim, the Search command lets you search for
transitions or values on selected signals. When you select Edit > Search, the Signal Search
dialog appears:

The Search dialog gives various options that are discussed further under "Wave Signal
Search dialog" (GR-234). One option of note is Search for Expression. The expression can
involve more than one signal but is limited to signals currently in the window. Expressions
can include constants, variables, and DO files. See "Expression syntax" (CR-23) for more
information.

Note: If your signal values are displayed in binary radix, see "Searching for binary signal
values in the GUI" (CR-29) for details on how signal values are mapped between a binary
radix and std_logic.
Sim SE User’s Manual

Searching in the Wave and List windows UM-253
Using the Expression Builder for expression searches

The Expression Builder is a feature of the Wave and List Signal Search dialog boxes, and
the List trigger properties dialog box. It aids in building a search expression that follows
the "GUI_expression_format" (CR-22).

To locate the Builder:

• select Edit > Search (List or Wave window)

• select the Search for Expression option in the resulting dialog box

• select the Builder button

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in a signal name, you can select the signal in
the associated Wave or List window and press Insert Selected Signal. All Expression
Builder buttons correspond to the "Expression syntax" (CR-23).

Saving an expression to a Tcl variable

Clicking the Save button will save the expression to a Tcl variable. Once saved this variable
can be used in place of the expression. For example, say you save an expression to the
variable "foo". Here are some operations you could do with the saved variable:

• Read the value of foo with the set command:

set foo

• Put $foo in the Expression: entry box for the Search for Expression selection.

• Issue a searchlog command using foo:

searchlog -expr $foo 0
ModelSim SE User’s Manual

UM-254 9 - Waveform analysis

Model
To search for when a signal reaches a particular value

Select the signal in the Wave window and click Insert Selected Signal and ==. Then, click
the value buttons or type a value.

To evaluate only on clock edges

Click the && button to AND this condition with the rest of the expression. Then select the
clock in the Wave window and click Insert Selected Signal and ‘rising. You can also
select the falling edge or both edges.

Operators

Other buttons will add operators of various kinds (see "Expression syntax" (CR-23)), or you
can type them in.
Sim SE User’s Manual

Formatting the Wave window UM-255
Formatting the Wave window

Setting Wave window display properties

You can set display properties of the Wave window by selecting Tools > Options > Wave
Preferences (when the window is docked in the MDI frame) or Tools > Window
Preferences (when the window is undocked). These commands open the Window
Preferences dialog (see "Window Preferences dialog" (GR-255) for details on the dialog).

Hiding/showing path hierarchy

You can set how many elements of the object path display by changing the Display Signal
Path value in the Window Preferences dialog. Zero indicates the full path while a non-zero
number indicates the number of path elements to be displayed.

Formatting objects in the Wave window

You can adjust various object properties to create the view you find most useful. Select one
or more objects and then select View > Signal Properties (see "Wave Signal Properties
dialog" (GR-237) for details on the dialog) or use the selections in the Format menu.

Changing radix (base)

One common adjustment is changing the radix (base) of an object. When you select View
> Signal Properties, the Wave Signal Properties dialog appears:

The default radix is symbolic, which means that for an enumerated type, the value pane lists
the actual values of the enumerated type of that object. For the other radixes - binary, octal,
ModelSim SE User’s Manual

UM-256 9 - Waveform analysis

Model
decimal, unsigned, hexadecimal, or ASCII - the object value is converted to an appropriate
representation in that radix.

Aside from the Wave Signal Properties dialog, there are three other ways to change the
radix:

• Change the default radix for the current simulation using Simulate > Runtime Options
(Main window)

• Change the default radix for the current simulation using the radix command (CR-241).

• Change the default radix permanently by editing the DefaultRadix (UM-531) variable in
the modelsim.ini file.

Dividing the Wave window

Dividers serve as a visual aid for debugging, allowing you to separate signals and
waveforms for easier viewing. In the graphic below, two datasets have been separated with
a divider called "gold."

To insert a divider, follow these steps:

1 Select the signal above which you want to place the divider.

2 If the Wave pane is docked in MDI frame of the Main window, select Add > Divider
from the Main window menu bar. If the Wave window stands alone, undocked from the
Main window, select Insert > Divider from the Wave window menu bar.
Sim SE User’s Manual

Formatting the Wave window UM-257
3 Specify the divider name in the Wave Divider Properties dialog. The default name is
New Divider. Unnamed dividers are permitted. Simply delete "New Divider" in the
Divider Name field to create an unnamed divider.

4 Specify the divider height (default height is 17 pixels) and then click OK.

You can also insert dividers with the -divider argument to the add wave command (CR-52).

Working with dividers

The table below summarizes several actions you can take with dividers:

Splitting Wave window panes

The pathnames, values, and waveforms panes of the Wave window display can be split to
accommodate signals from one or more datasets. For more information on viewing multiple
simulations, see Chapter 8 - WLF files (datasets) and virtuals.

To split the window, select Insert > Window Pane.

Action Method

Move a divider Click-and-drag the divider to the desired location

Change a divider’s
name or size

Right-click the divider and select Divider Properties

Delete a divider Right-click the divider and select Delete
ModelSim SE User’s Manual

UM-258 9 - Waveform analysis

Model
In the illustration below, the top split shows the current active simulation with the prefix
"sim," and the bottom split shows a second dataset with the prefix "gold".

The active split

The active split is denoted with a solid white bar to the left of the signal names. The active
split becomes the target for objects added to the Wave window.
Sim SE User’s Manual

Formatting the List window UM-259
Formatting the List window

Setting List window display properties

Before you add objects to the List window, you can set the window’s display properties. To
change when and how a signal is displayed in the List window, select Tools > Window
Preferences. See "Modify Display Properties dialog" (GR-162) for more details.

Formatting objects in the List window

You can adjust various properties of objects to create the view you find most useful. Select
one or more objects and then select View > Signal Properties. This dialog is described in
detail under "List Signal Properties dialog" (GR-159).

Changing radix (base)

One common adjustment is changing the radix (base) of an object. When you select View
> Signal Properties, the List Signal Properties dialog appears:

The default radix is symbolic, which means that for an enumerated type, the window lists
the actual values of the enumerated type of that object. For the other radixes - binary, octal,
decimal, unsigned, hexadecimal, or ASCII - the object value is converted to an appropriate
representation in that radix.
ModelSim SE User’s Manual

UM-260 9 - Waveform analysis

Model
Changing the radix can make it easier to view information in the List window. Compare
the image below (with decimal values) with the image on page UM-243 (with symbolic
values).

Aside from the List Signal Properties dialog, there are three other ways to change the radix:

• Change the default radix for the current simulation using Simulate > Runtime Options
(Main window)

• Change the default radix for the current simulation using the radix command (CR-241).

• Change the default radix permanently by editing the DefaultRadix (UM-531) variable in
the modelsim.ini file.
Sim SE User’s Manual

Saving the window format UM-261
Saving the window format

By default all Wave and List window information is forgotten once you close the windows.
If you want to restore the windows to a previously configured layout, you must save a
window format file. Follow these steps:

1 Add the objects you want to the Wave or List window.

2 Edit and format the objects to create the view you want.

3 Save the format to a file by selecting File > Save > Format.

To use the format file, start with a blank Wave or List window and run the DO file in one
of two ways:

• Invoke the do command (CR-151) from the command line:

VSIM> do <my_format_file>

• Select File > Open > Format.

Note: Window format files are design-specific. Use them only with the design you were
simulating when they were created.
ModelSim SE User’s Manual

UM-262 9 - Waveform analysis

Model
Printing and saving waveforms in the Wave window

You can print the waveform display or save it as an encapsulated postscript (EPS) file. The
printing dialogs are described in detail in the GUI Reference appendix.

Saving a .eps file and printing under UNIX

Select File > Print Postscript (Wave window) to print all or part of the waveform in the
current Wave window in UNIX, or save the waveform as a .eps file on any platform (see
also the write wave command (CR-431)).

Printing on Windows platforms

Select File > Print (Wave window) to print all or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).

Printer page setup

Select File > Page setup or click the Setup button in the Write Postscript or Print dialog
box to define how the printed page will appear. The Page Setup dialog is described in detail
in the GUI Reference appendix.
Sim SE User’s Manual

Saving List window data to a file UM-263
Saving List window data to a file

Select File > Write List in the List window to save the data in one of these formats:

• Tabular
writes a text file that looks like the window listing

ns delta /a /b /cin /sum /cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 +0 0 1 0 X U

• Events
writes a text file containing transitions during simulation

@0 +0
/a X
/b X
/cin U
/sum X
/cout U
@0 +1
/a 0
/b 1
/cin 0

• TSSI
writes a file in standard TSSI format; see also, the write tssi command (CR-429)

0 00000000000000010?????????
2 00000000000000010???????1?
3 00000000000000010??????010
4 00000000000000010000000010
100 00000001000000010000000010

You can also save List window output using the write list command (CR-424).
ModelSim SE User’s Manual

UM-264 9 - Waveform analysis

Model
Combining objects/creating busses

You can combine signals in the Wave or List window into busses. A bus is a collection of
signals concatenated in a specific order to create a new virtual signal with a specific value.

To combine signals into a bus, use one of the following methods:

• Select two or more signals in the Wave or List window and then choose Tools > Combine
Signals from the menu bar.

• Use the virtual signal command (CR-351) at the Main window command prompt.

The Combine Signals dialog in the List and Wave windows differ slightly. See "Combine
Selected Signals dialog" (GR-161) for the List window and "Combine Selected Signals
dialog" (GR-253) for the Wave window.

Example

In the illustration below, three signals have been combined to form a new bus called "bus".
Note that the component signals are listed in the order in which they were selected in the
Wave window. Also note that the value of the bus is made up of the values of its component
signals, arranged in a specific order.
Sim SE User’s Manual

Configuring new line triggering in the List window UM-265
Configuring new line triggering in the List window

New line triggering refers to what events cause a new line of data to be added to the List
window. By default ModelSim adds a new line for any signal change including deltas
within a single unit of time resolution.

You can set new line triggering on a signal-by-signal basis or for the whole simulation. To
set for a single signal, select View > Signal Properties and modify the Triggers setting (see
"List Signal Properties dialog" (GR-159) for details). Individual signal settings override
global settings.

To modify new line triggering for the whole simulation, select Tools > Window
Preferences or use the configure command (CR-123). When you select Tools > Window
Preferences, the Modify Display Properties dialog appears:

The dialog gives various options that are discussed further under "Modify Display
Properties dialog" (GR-162). The following table summaries the options:

Option Description

Deltas Choose between displaying all deltas (Expand Deltas),
displaying the value at the final delta (Collapse Delta), or
hiding the delta column all together (No Delta)
ModelSim SE User’s Manual

UM-266 9 - Waveform analysis

Model
Using gating expressions to control triggering

Trigger gating controls the display of data based on an expression. Triggering is enabled
once the gating expression evaluates to true. This setup behaves much like a hardware
signal analyzer that starts recording data on a specified setup of address bits and clock
edges.

Here are some points about gating expressions:

• Gating expressions affect the display of data but not acquisition of the data.

• The expression is evaluated when the List window would normally have displayed a row
of data (given the other trigger settings).

• The duration determines for how long triggering stays enabled after the gating expression
returns to false (0). The default of 0 duration will enable triggering only while the
expression is true (1). The duration is expressed in x number of default timescale units.

• Gating is level-sensitive rather than edge-triggered.

Trigger gating example using the Expression Builder

This example shows how to create a gating expression with the ModelSim Expression
Builder. Here is the procedure:

1 Select Tools > Window Preferences to access the Triggers tab.

Strobe trigger Specify an interval at which you want to trigger data display

Trigger gating Use a gating expression to control triggering; see "Using
gating expressions to control triggering" (UM-266) for more
details

Option Description
Sim SE User’s Manual

Configuring new line triggering in the List window UM-267
2 Check the Use Gating Expression check box and click Use Expression Builder.

3 Select the signal in the List window that you want to be the enable signal by clicking on
its name in the header area of the List window.

4 Click Insert Selected Signal and then 'rising in the Expression Builder.

5 Click OK to close the Expression Builder.

You should see the name of the signal plus "'rising" added to the Expression entry box of
the Modify Display Properties dialog box.

6 Click OK to close the dialog.

If you already have simulation data in the List window, the display should immediately
switch to showing only those cycles for which the gating signal is rising. If that isn't quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a "One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10 ns.

Trigger gating example using commands

The following commands show the gating portion of a trigger configuration statement:

configure list -usegating 1
configure list -gateduration 100
configure list -gateexpr {/test_delta/iom_dd'rising}

See the configure command (CR-123) for more details.
ModelSim SE User’s Manual

UM-268 9 - Waveform analysis

Model
Sampling signals at a clock change

You easily can sample signals at a clock change using the add list command (CR-48) with
the -notrigger argument. -notrigger disables triggering the display on the specified signals.
For example:

add list clk -notrigger a b c

When you run the simulation, List window entries for clk, a, b, and c appear only when clk
changes.

If you want to display on rising edges only, you have two options:

1 Turn off the List window triggering on the clock signal, and then define a repeating
strobe for the List window.

2 Define a "gating expression" for the List window that requires the clock to be in a
specified state. See above.
Sim SE User’s Manual

Miscellaneous tasks UM-269
Miscellaneous tasks

Examining waveform values

You can use your mouse to display a dialog that shows the value of a waveform at a
particular time. You can do this two ways:

• Rest your mouse pointer on a waveform. After a short delay, a dialog will pop-up that
displays the value for the time at which your mouse pointer is positioned. If you’d prefer
that this popup not display, it can be toggled off in the display properties. See "Setting
Wave window display properties" (UM-255).

• Right-click a waveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse. This method works in the List window as well.

Displaying drivers of the selected waveform

You can automatically display in the Dataflow window the drivers of a signal selected in
the Wave window. You can do this three ways:

• Select a waveform and click the Show Drivers button on the toolbar.

• Select a waveform and select Show Drivers from the shortcut menu

• Double-click a waveform edge (you can enable/disable this option in the display
properties dialog; see "Setting Wave window display properties" (UM-255))

This operation opens the Dataflow window and displays the drivers of the signal selected
in the Wave window. The Wave pane in the Dataflow window also opens to show the
selected signal with a cursor at the selected time. The Dataflow window shows the signal(s)
values at the current cursor position.

Sorting a group of objects in the Wave window

Select View > Sort to sort the objects in the pathname and values panes.

Setting signal breakpoints in the Wave window

You can set signal breakpoints in the Wave window. When a signal breakpoint is hit, a
message appears in the Main window Transcript stating which signal caused the
breakpoint.

To insert a signal breakpoint, right-click a signal and select Insert Breakpoint. A
breakpoint will be set on the selected signal. See "Creating and managing breakpoints" (GR-

264) for more information.
ModelSim SE User’s Manual

UM-270 9 - Waveform analysis

Model
Waveform Compare

The ModelSim Waveform Compare feature allows you to compare simulation runs.
Differences encountered in the comparison are summarized and listed in the Main window
transcript. Differences are also shown in the Wave and List windows, and you can write a
list of the differences to a file using the compare info command (CR-106).

The basic steps for running a comparison are as follows:

1 Run one simulation and save the dataset. For more information on saving datasets, see
"Saving a simulation to a WLF file" (UM-227).

2 Run a second simulation.

3 Setup and run a comparison.

4 Analyze the differences in the Wave or List window.

Mixed-language waveform compare support

Mixed-language compares are supported as listed in the following table:

The number of elements must match for vectors; specific indexes are ignored.

Three options for setting up a comparison

There are three options for setting up a comparison:

• Comparison Wizard – A series of dialogs that "walk" you through the process

• GUI – Use various dialogs to "manually" configure the comparison

• Comparison commands – Use a series of compare commands

Note: The Waveform Compare feature is available as an add-on to the LE version.
Contact Model Technology sales for more information.

 C/C++ types bool, char, unsigned char
short, unsigned short
int, unsigned int
long, unsigned long

SystemC types sc_bit, sc_bv, sc_logic, sc_lv
sc_int, sc_uint
sc_bigint, sc_biguint
sc_signed, sc_unsigned

Verilog types net, reg

VHDL types bit, bit_vector, boolean, std_logic, std_logic_vector
Sim SE User’s Manual

http://www.model.com/contact_us

Waveform Compare UM-271
Comparison Wizard

The simplest method for setting up a comparison is using the Wizard. The wizard is a series
of dialogs that walks you through the process. To start the Wizard, select Tools >
Waveform Compare > Comparison Wizard from either the Wave or Main window.

The graphic below shows the first dialog in the Wizard. As you can see from this example,
the dialogs include instructions on the left-hand side.

Comparison graphic interface

You can also set up a comparison via the GUI without using the Wizard. The steps of this
process are described further in "Setting up a comparison with the GUI" (UM-271).

Comparison commands

There are numerous commands that give you complete control over a comparison. These
commands can be entered in the Main window transcript or run via a DO file. The
commands are detailed in the ModelSim Command Reference, but the following example
shows the basic sequence:

compare start gold.wlf vsim.wlf
compare add /*
compare run

Setting up a comparison with the GUI

To setup a comparison with the GUI, follow these steps:

1 Initiate the comparison by specifying the reference and test datasets. See "Starting a
waveform comparison" (UM-272) for details.
ModelSim SE User’s Manual

UM-272 9 - Waveform analysis

Model
2 Add objects to the comparison. See "Adding signals, regions, and clocks" (UM-274) for
details.

3 Specify the comparison method. See "Specifying the comparison method" (UM-276) for
details.

4 Configure comparison options. See "Setting compare options" (UM-278) for details.

5 Run the comparison by selecting Tools > Waveform Compare > Run Comparison.

6 View the results. See "Viewing differences in the Wave window" (UM-279), "Viewing
differences in the List window" (UM-281), and "Viewing differences in textual format"
(UM-282)for details.

Waveform Compare is initiated from either the Main or Wave window by selecting Tools
>Waveform Compare > Start Comparison.

Starting a waveform comparison

Select Tools >Waveform Compare > Start Comparison to initiate the comparison. The
Start Comparison dialog box allows you define the Reference and Test datasets.

Reference Dataset

The Reference Dataset is the .wlf file to which the test dataset will be compared. It can be
a saved dataset, the current simulation dataset, or any part of the current simulation dataset.
Sim SE User’s Manual

Waveform Compare UM-273
Test Dataset

The Test Dataset is the .wlf file that will be compared against the Reference Dataset. Like
the Reference Dataset, it can be a saved dataset, the current simulation dataset, or any part
of the current simulation dataset.

Once you click OK in the Start Comparison dialog box, ModelSim adds a Compare tab to
the Main window.

After adding the signals, regions, and/or clocks you want to use in the comparison (see
"Adding signals, regions, and clocks" (UM-274)), you will be able to drag compare objects
from this tab into the Wave and List windows.
ModelSim SE User’s Manual

UM-274 9 - Waveform analysis

Model
Adding signals, regions, and clocks

To designate the signals, regions, or clocks to be used in the comparison, click Tools >
Waveform Compare > Add.

Adding signals

Clicking Tools > Waveform Compare > Add > Compare by Signal in the Wave window
opens the structure_browser window, where you can specify signals to be used in the
comparison.
Sim SE User’s Manual

Waveform Compare UM-275
Adding regions

Rather than comparing individual signals, you can also compare entire regions of your
design. Select Tools > Waveform Compare > Add > Compare by Region to open the
Add Comparison by Region dialog. The dialog has several options which are detailed in the
GUI reference appendix.

Adding clocks

You add clocks when you want to perform a clocked comparison. See "Specifying the
comparison method" (UM-276) for details.
ModelSim SE User’s Manual

UM-276 9 - Waveform analysis

Model
Specifying the comparison method

The Waveform Compare feature provides two comparison methods:

• Continuous comparison – Test signals are compared to reference signals at each
transition of the reference. Timing differences between the test and reference signals are
shown with rectangular red markers in the Wave window and yellow markers in the List
window.

• Clocked comparisons – Signals are compared only at or just after an edge on some signal.
In this mode, you define one or more clocks. The test signal is compared to a reference
signal and both are sampled relative to the defined clock. The clock can be defined as the
rising or falling edge (or either edge) of a particular signal plus a user-specified delay.
The design need not have any events occurring at the specified clock time. Differences
between test signals and the clock are highlighted with red diamonds in the Wave
window.

To specify the comparison method, select Tools > Waveform Compare > Options and
select the Comparison Method tab.

Continuous comparison

Continuous comparisons are the default. You have the option of specifying leading and
trailing tolerances and a when expression that must evaluate to "true" or 1 at the signal edge
for the comparison to become effective. See "Add Signal Options dialog" (GR-244) for more
details on this dialog.
Sim SE User’s Manual

Waveform Compare UM-277
Clocked comparison

To specify a clocked comparison you must define a clock in the Add Clock dialog. You can
access this dialog via the Clocks button in the Comparison Method tab or by selecting
Tools > Waveform Compare > Add > Clocks.

See "Add Clocks dialog" (GR-246) for details on this dialog.
ModelSim SE User’s Manual

UM-278 9 - Waveform analysis

Model
Setting compare options

There are a few "global" options that you can set for a comparison. Select Tools >
Waveform Compare > Options.

Options in this dialog include setting the maximum number of differences allowed before
the comparison terminates, specifying signal value matching rules, and saving or resetting
the defaults. See "Comparison Options dialog" (GR-247) for more details.
Sim SE User’s Manual

Waveform Compare UM-279
Viewing differences in the Wave window

The Wave window provides a graphic display of comparison results. Pathnames of all test
signals included in the comparison are denoted by yellow triangles. Test signals that
contain timing differences when compared with the reference signals are denoted by a red
X over the yellow triangle.

The names of the comparison objects take the form:

<path>/\refSignalName<>testSignalName\

If you compare two signals from different regions, the signal names include the uncommon
part of the path.

In comparisons of signals with multiple bits, you can display them in "buswise" or
"bitwise" format. Buswise format lists the busses under the compare object whereas bitwise
format lists each individual bit under the compare object. To select one format or the other,
click your right mouse button on the plus sign (’+’) next to a compare object.

Timing differences are also indicated by red bars in the vertical and horizontal scroll bars
of the waveform display, and by red difference markers on the waveforms themselves.
Rectangular difference markers denote continuous differences. Diamond difference
markers denote clocked differences. Placing your mouse cursor over any difference marker
ModelSim SE User’s Manual

UM-280 9 - Waveform analysis

Model
will initiate a popup display that provides timing details for that difference. You can toggle
this popup on and off in the "Window Preferences dialog" (GR-255).

The values column of the Wave window displays the words "match" or "diff" for every test
signal, depending on the location of the selected cursor. "Match" indicates that the value of
the test signal matches the value of the reference signal at the time of the selected cursor.
"Diff" indicates a difference between the test and reference signal values at the selected
cursor.

Annotating differences

You can tag differences with textual notes that are included in the difference details popup
and comparison reports. Click a difference with the right mouse button, and select
Annotate Diff. Or, use the compare annotate (CR-98) command.

difference markersdifference details

Pathnames Values Waveform display
Sim SE User’s Manual

Waveform Compare UM-281
Compare icons

The Wave window includes six comparison icons that
let you quickly jump between differences. From left to
right, the icons do the following: find first difference,
find previous annotated difference, find previous difference, find next difference, find next
annotated difference, find last difference. Use these icons to move the selected cursor.

These buttons cycle through differences on all signals. To view differences for just the
selected signal, press <tab> and <shift - tab> on your keyboard.

The compare icons cycle through comparison objects in all open Wave windows. If you
have two Wave windows displayed, each containing different comparison objects, the
compare icons will cycle through the differences displayed in both windows.

Viewing differences in the List window

Compare objects can be displayed in the List window too. Differences are highlighted with
a yellow background. Tabbing on selected columns moves the selection to the next
difference (actually difference edge). Shift-tabbing moves the selection backwards.

Right-clicking on a yellow-highlighted difference gives you three options: Diff Info,
Annotate Diff, and Ignore/Noignore diff. With these options you can elect to display
difference information, you can ignore selected differences or turn off ignore, and you can
annotate individual differences.

Note: If you have differences on individual bits of a bus, the compare icons will stop on
those differences but <tab> and <shift - tab> will not.
ModelSim SE User’s Manual

UM-282 9 - Waveform analysis

Model
Viewing differences in textual format

You can also view text output of the differences either in the Transcript pane of the Main
window or in a saved file. To view them in the transcript, select Tools > Waveform
Compare > Differences > Show. To save them to a text file, select Tools > Waveform
Compare > Differences > Write Report.

Saving and reloading comparison results

To save comparison results for future use, you must save both the comparison setup rules
and the comparison differences.

To save the rules, select Tools > Waveform Compare > Rules > Save. This file will
contain all rules for reproducing the comparison. The default file name is "compare.rul."

To save the differences, select Tools > Waveform Compare > Differences > Save. The
default file name is "compare.dif".

To reload the comparison results at a later time, select Tools > Waveform Compare >
Reload and specify the rules and difference files.
Sim SE User’s Manual

Waveform Compare UM-283
Comparing hierarchical and flattened designs

If you are comparing a hierarchical RTL design simulation against a flattened synthesized
design simulation, you may have different hierarchies, different signal names, and the
buses may be broken down into one-bit signals in the gate-level design. All of these
differences can be handled by ModelSim’s Waveform Compare feature.

• If the test design is hierarchical but the hierarchy is different from the hierarchy of the
reference design, you can use the compare add command (CR-94) to specify which
region path in the test design corresponds to that in the reference design.

• If the test design is flattened and test signal names are different from reference signal
names, the compare add command (CR-94) allows you to specify which signal in the test
design will be compared to which signal in the reference design.

• If, in addition, buses have been dismantled, or "bit-blasted", you can use the -rebuild
option of the compare add command (CR-94) to automatically rebuild the bus in the test
design. This will allow you to look at the differences as one bus versus another.

If signals in the RTL test design are different in type from the synthesized signals in the
reference design – registers versus nets, for example – the Waveform Compare feature will
automatically do the type conversion for you. If the type differences are too extreme (say
integer versus real), Waveform Compare will let you know.
ModelSim SE User’s Manual

UM-284 9 - Waveform analysis

Model
Sim SE User’s Manual

 GR-285
10 - Generating stimulus with Waveform Editor

Chapter contents
Introduction GR-286

Limitations GR-286

Getting started GR-287
Using Waveform Editor prior to loading a design GR-287
Using Waveform Editor after loading a design GR-288

Creating waveforms from patternsGR-289

Editing waveformsGR-290
Selecting parts of the waveform GR-291
Stretching and moving edges GR-292

Simulating directly from waveform editor. GR-293

Exporting waveforms to a stimulus file GR-294

Driving simulation with the saved stimulus file GR-295
Signal mapping and importing EVCD files GR-295

Using Waveform Compare with created waveforms GR-296

Saving the waveform editor commands GR-297
ModelSim SE User’s Manual

GR-286 10 - Generating stimulus with Waveform Editor

Model
Introduction

The ModelSim Waveform Editor offers a simple method for creating design stimulus. You
can generate and edit waveforms in a graphical manner and then drive the simulation with
those waveforms. With Waveform Editor you can do the following:

• Create waveforms using four predefined patterns: clock, random, repeater, and counter.
See "Creating waveforms from patterns" (GR-289).

• Edit waveforms with numerous functions including inserting, deleting, and stretching
edges; mirroring, inverting, and copying waveform sections; and changing waveform
values on-the-fly. See "Editing waveforms" (GR-290).

• Drive the simulation directly from the created waveforms

• Save created waveforms to four stimulus file formats: Tcl force format, extended VCD
format, Verilog module, or VHDL architecture. The HDL formats include code that
matches the created waveforms and can be used in testbenches to drive a simulation. See
"Exporting waveforms to a stimulus file" (GR-294)

Limitations

The current version does not support the following:

• Enumerated signals, records, multi-dimensional arrays, and memories

• User-defined types

• SystemC or SystemVerilog
Sim SE User’s Manual

Getting started GR-287
Getting started

You can use Waveform Editor before or after loading a design. Regardless of which
method you choose, you will select design objects and use them as the basis for created
waveforms.

Using Waveform Editor prior to loading a design

Here are the basic steps for using waveform editor prior to loading a design:

1 Right-click a design unit on the Library tab of the Workspace pane and select Create
Wave.

2 Edit the waveforms in the Wave window. See "Editing waveforms" (GR-290) for more
details.

3 Run the simulation (see "Simulating directly from waveform editor" (GR-293)) or save
the created waveforms to a stimulus file (see "Exporting waveforms to a stimulus file"
(GR-294)).
ModelSim SE User’s Manual

GR-288 10 - Generating stimulus with Waveform Editor

Model
Using Waveform Editor after loading a design

Here are the basic steps for using waveform editor after loading a design:

1 Right-click a block in the structure tab of the Workspace pane or an object in the Object
pane and select Create Wave.

2 Use the Create Pattern wizard to create the waveforms (see "Creating waveforms from
patterns" (GR-289)).

3 Edit the waveforms as required (see "Editing waveforms" (GR-290)).

4 Run the simulation (see "Simulating directly from waveform editor" (GR-293)) or save
the created waveforms to a stimulus file (see "Exporting waveforms to a stimulus file"
(GR-294)).
Sim SE User’s Manual

Creating waveforms from patterns GR-289
Creating waveforms from patterns

Waveform Editor includes a Create Pattern wizard that walks you through the process of
creating waveforms. To access the wizard, do one of the following:

• Right-click an object in the Objects pane or structure pane and select Create Wave.

• Right-click a signal already in the Wave window and select Create/Modify Waveform.
(Only possible before simulation is run.)

The graphic below shows the initial dialog in the wizard. Note that the Drive Type field is
not present for input and output signals.

In this dialog you specify the signal that the waveform will be based upon, the Drive Type
(if applicable), the start and end time for the waveform, and the pattern for the waveform.

The second dialog in the wizard lets you specify the appropriate attributes based on the
pattern you select. The table below shows the five available patterns and their attributes:

Pattern Description

Clock Specify an initial value, duty cycle, and clock period for the waveform.

Constant Specify a value.

Random Generates different patterns depending upon the seed value. Specify
the type (normal or uniform), an initial value, and a seed value. If you
don’t specify a seed value, ModelSim uses a default value of 5.

Repeater Specify an initial value and pattern that repeats. You can also specify
how many times the pattern repeats.

Counter Specify start and end values, time period, type (Range, Binary, Gray,
One Hot, Zero Hot, Johnson), counter direction, step count, and repeat
number.
ModelSim SE User’s Manual

GR-290 10 - Generating stimulus with Waveform Editor

Model
Editing waveforms

You can edit waveforms interactively with menu commands, mouse actions, or by using
the wave edit command (CR-400).

To edit waveforms in the Wave window, follow these steps:

1 Create an editable pattern as described under "Creating waveforms from patterns" (GR-

289).

2 Enter editing mode by selecting View > Mouse Mode > Edit Mode or by
clicking the Edit Mode icon.

3 Select an edge or a section of the waveform with your mouse. See "Selecting
parts of the waveform" (GR-291) for more details.

4 Select a command from the Edit > Edit Wave menu or right-click on the waveform and
select a command from the Edit Wave context menu.

The table below summarizes the editing commands that are available.

Operation Description

Cut Cut the selected portion of the waveform to the clipboard

Copy Copy the selected portion of the waveform to the clipboard

Value Change the value of the selected portion of the waveform

Delete Edge Delete the edge at the active cursor

Insert Pulse Insert a pulse at the location of the active cursor

Invert Invert the selected waveform section

Mirror Mirror the selected waveform section

Paste Paste the contents of the clipboard over the selected section or at the
active cursor location

Stretch Edge Move an edge forward/backward by "stretching" the waveform; see
"Stretching and moving edges" (GR-292) for more information

Move Edge Move an edge forward/backward without changing other edges; see
"Stretching and moving edges" (GR-292) for more information

Drive Type Change the drive type of the selected portion of the waveform

Extend All Waves Extend all created waveforms by the specified amount or to the
specified simulation time; ModelSim cannot undo this edit or any
edits done prior to an extend command

Undo Undo waveform edits (except changing drive type and extending all
waves)

Redo Redo previously undone waveform edits
Sim SE User’s Manual

Editing waveforms GR-291
These commands can also be accessed via toolbar buttons. See "Waveform editor toolbar"
(GR-222) for more information.

Selecting parts of the waveform

There are several methods for selecting edges or sections of a waveform. The table and
graphic below describe the various options.

Action Method

Select a waveform edge Click on or just to the right of the waveform edge

Select a section of the waveform Click-and-drag the mouse pointer in the
waveform pane

Select a section of multiple waveforms Click-and-drag the mouse pointer while holding
the <Shift> key

Extend/contract the selection size Drag a cursor in the cursor pane

Extend/contract selection from edge-to-
edge

Click Next Transition/Previous Transition icons
after selecting section

Drag cursor here to extend/
contract selection

Click these icons to extend/
contract selection from
edge-to-edge
ModelSim SE User’s Manual

GR-292 10 - Generating stimulus with Waveform Editor

Model
Selection and zoom percentage

You may find that you cannot select the exact range you want because the mouse moves
more than one unit of simulation time (e.g., 228 ns to 230 ns). If this happens, zoom in on
the Wave display (see "Zooming the Wave window display" (UM-249)), and you should be
able to select the range you want.

Auto snapping of the cursor

When you click just to the right of a waveform edge in the waveform pane, the cursor
automatically "snaps" to the nearest edge. This behavior is controlled by the Snap Distance
setting in the Wave window preferences dialog. See "Window Preferences dialog" (GR-255)
for more information.

Stretching and moving edges

There are mouse and keyboard shortcuts for moving and stretching edges:

Here are some points to keep in mind about stretching and moving edges:

• If you stretch an edge forward, more waveform is inserted at the beginning of simulation
time.

• If you stretch an edge backward, waveform is deleted at the beginning of simulation time.

• If you move an edge past another edge, either forward or backward, the edge you moved
past is deleted.

Action Mouse/keyboard shortcut

Stretch an edge Hold the <Ctrl> key and drag the edge

Move an edge Hold the <Ctrl> key and drag the edge with the
2nd (middle) mouse button
Sim SE User’s Manual

Simulating directly from waveform editor GR-293
Simulating directly from waveform editor

You need not save the waveforms in order to use them as stimulus for a simulation. Once
you have configured all the waveforms, you can run the simulation as normal by selecting
Simulate > Start Simulation in the Main window or using the vsim command (CR-373).
ModelSim automatically uses the created waveforms as stimulus for the simulation.
Furthermore, while running the simulation you can continue editing the waveforms to
modify the stimulus for the part of the simulation yet to be completed.
ModelSim SE User’s Manual

GR-294 10 - Generating stimulus with Waveform Editor

Model
Exporting waveforms to a stimulus file

Once you have created and edited the waveforms, you can save the data to a stimulus file
that can be used to drive a simulation now or at a later time. To save the waveform data,
select File > Export Waveform or use the wave export command (CR-403).

You can save the waveforms in four different formats:

Format Description

Force format Creates a Tcl script that contains force commands necessary to
recreate the waveforms; source the file when loading the
simulation as described under "Driving simulation with the
saved stimulus file" (GR-295)

EVCD format Creates an extended VCD file which can be reloaded using the
Import > EVCD File command or can be used with the
-vcdstim argument to vsim (CR-373) to simulate the design

VHDL Testbench Creates a VHDL architecture that you load as the top-level
design unit

Verilog Testbench Creates a Verilog module that you load as the top-level design
unit
Sim SE User’s Manual

Driving simulation with the saved stimulus file GR-295
Driving simulation with the saved stimulus file

The method for loading the stimulus file depends upon what type of format you saved. In
each of the following examples, assume that the top-level of your block is named "top" and
you saved the waveforms to a stimulus file named "mywaves" with the default extension.

Signal mapping and importing EVCD files

When you import a previously saved EVCD file, ModelSim attempts to map the signals in
the EVCD file to the signals in the loaded design. It matches signals based on name and
width.

If ModelSim can’t map the signals automatically, you can do the mapping yourself by
selecting one or more signals, right-clicking a selected signal, and then selecting Map to
Design Signal.

Select a signal from the drop-down arrow and click OK. You will repeat this process for
each signal you selected.

Format Loading example

Force format vsim top -do mywaves.do

Extended VCD formata

a.You can also use the Import > EVCD command from the Wave window. See below
for more details on working with EVCD files.

vsim top -vcdstim mywaves.vcd

VHDL Testbench vcom mywaves.vhd
vsim mywaves

Verilog Testbench vlog mywaves.v
vsim mywaves
ModelSim SE User’s Manual

GR-296 10 - Generating stimulus with Waveform Editor

Model
Using Waveform Compare with created waveforms

The Waveform Compare feature compares two or more waveforms and displays the
differences in the Wave window (see "Waveform Compare" (UM-270) for details). This
feature can be used in tandem with Waveform Editor. The combination is most useful in
situations where you know the expected output of a signal and want to compare visually the
differences between expected output and simulated output.

The basic procedure for using the two features together is as follows:

• Create a waveform based on the signal of interest with a drive type of expected output

• Add the design signal of interest to the Wave window and then run the design

• Start a comparison and use the created waveform as the reference dataset for the
comparison. Use the text "Edit" to designate a create waveform as the reference dataset.
For example:

compare start Edit sim
compare add -wave /test_counter/count
compare run
Sim SE User’s Manual

Saving the waveform editor commands GR-297
Saving the waveform editor commands

When you create and edit waveforms in the Wave window, ModelSim tracks the
underlying Tcl commands and reports them to the transcript. You can save those commands
to a DO file that can be run at a later time to recreate the waveforms.

To save your waveform editor commands, select File > Save.
ModelSim SE User’s Manual

GR-298 10 - Generating stimulus with Waveform Editor

Model
Sim SE User’s Manual

 UM-299
11 - Tracing signals with the Dataflow window

Chapter contents
Dataflow window overview UM-300

Objects you can view UM-300

Adding objects to the window UM-301

Links to other windows UM-302

Exploring the connectivity of your design UM-303
Tracking your path through the design UM-303

The embedded wave viewer UM-304

Zooming and panning UM-305
Zooming with toolbar buttons. UM-305
Zooming with the mouse UM-305
Panning with the mouse UM-305

Tracing events (causality) UM-306

Tracing the source of an unknown (X). UM-307

Finding objects by name in the Dataflow window. UM-309

Printing and saving the display UM-310
Saving a .eps file and printing under UNIX UM-310
Printing on Windows platforms UM-311

Configuring page setup UM-312

Symbol mapping UM-313

Configuring window options UM-315

This chapter discusses how to use the Dataflow window for tracing signal values and
browsing the physical connectivity of your design.
ModelSim SE User’s Manual

UM-300 11 - Tracing signals with the Dataflow window

Model
Dataflow window overview

The Dataflow window allows you to explore the "physical" connectivity of your design; to
trace events that propagate through the design; and to identify the cause of unexpected
outputs.

Objects you can view

The Dataflow window displays processes; signals, nets, and registers; and interconnect.
The window has built-in mappings for all Verilog primitive gates (i.e., AND, OR, etc.). For
components other than Verilog primitives, you can define a mapping between processes
and built-in symbols. See "Symbol mapping" (UM-313) for details.

You cannot view SystemC objects in the Dataflow window; however, you can view HDL
regions from mixed designs that include SystemC.

Note: ModelSim versions operating without a dataflow license feature have limited
Dataflow functionality. Without the license feature, the window will show only one
process and its attached signals or one signal and its attached processes. Contact your
Mentor Graphics sales representative if you currently don’t have a dataflow feature.
Sim SE User’s Manual

Adding objects to the window UM-301
Adding objects to the window

You can use any of the following methods to add objects to the Dataflow window:

• drag and drop objects from other windows

• use the Navigate menu options in the Dataflow window

• use the add dataflow command (CR-47)

• double-click any waveform in the Wave window display

The Navigate menu offers four commands that will add objects to the window. The
commands include:

View region — clear the window and display all signals from the current region

Add region — display all signals from the current region without first clearing window

View all nets — clear the window and display all signals from the entire design

Add ports — add port symbols to the port signals in the current region

When you view regions or entire nets, the window initially displays only the drivers of the
added objects in order to reduce clutter. You can easily view readers by selecting an object
and invoking Navigate > Expand net to readers.

A small circle above an input signal on a block denotes a trigger signal that is on the
process’ sensitivity list.
ModelSim SE User’s Manual

UM-302 11 - Tracing signals with the Dataflow window

Model
Links to other windows

The Dataflow window has links to other windows as described below:

Window Link

 Main window (GR-14) select a signal or process in the Dataflow window, and
the structure tab updates if that object is in a different
design unit

 Active Processes pane (GR-108) select a process in either window, and that process is
highlighted in the other

 Objects pane (GR-184) select a design object in either window, and that object
is highlighted in the other

 Wave window (GR-211) • trace through the design in the Dataflow
window, and the associated signals are added to
the Wave window

• move a cursor in the Wave window, and the
values update in the Dataflow window

 Source window (GR-199) select an object in the Dataflow window, and the
Source window updates if that object is in a
different source file
Sim SE User’s Manual

Exploring the connectivity of your design UM-303
Exploring the connectivity of your design

A primary use of the Dataflow window is exploring the "physical" connectivity of your
design. One way of doing this is by expanding the view from process to process. This
allows you to see the drivers/receivers of a particular signal, net, or register.

You can expand the view of your design using menu commands or your mouse. To expand
with the mouse, simply double click a signal, register, or process. Depending on the specific
object you click, the view will expand to show the driving process and interconnect, the
reading process and interconnect, or both.

Alternatively, you can select a signal, register, or net, and use one of the toolbar buttons or
menu commands described below:

As you expand the view, note that the "layout" of the design may adjust to best show the
connectivity. For example, the location of an input signal may shift from the bottom to the
top of a process.

Tracking your path through the design

You can quickly traverse through many components in your design. To help mark your
path, the objects that you have expanded are highlighted in green.

You can clear this highlighting using the Edit > Erase highlight command.

Expand net to all drivers
display driver(s) of the selected signal, net, or
register

Navigate > Expand net
to drivers

Expand net to all drivers and readers
display driver(s) and reader(s) of the selected
signal, net, or register

Navigate > Expand net

Expand net to all readers
display reader(s) of the selected signal, net, or
register

Navigate > Expand net
to readers
ModelSim SE User’s Manual

UM-304 11 - Tracing signals with the Dataflow window

Model
The embedded wave viewer

Another way of exploring your design is to use the Dataflow window’s embedded wave
viewer. This viewer closely resembles, in appearance and operation, the stand-alone Wave
window (see Chapter 9 - Waveform analysis for more information).

The wave viewer is opened using the View > Show Wave command.

One common scenario is to place signals in the wave viewer and the Dataflow panes, run
the design for some amount of time, and then use time cursors to investigate value changes.
In other words, as you place and move cursors in the wave viewer pane (see "Measuring
time with cursors in the Wave window" (UM-245) for details), the signal values update in the
Dataflow pane.

Another scenario is to select a process in the Dataflow pane, which automatically adds to
the wave viewer pane all signals attached to the process.

See "Tracing events (causality)" (UM-306) for another example of using the embedded wave
viewer.
Sim SE User’s Manual

Zooming and panning UM-305
Zooming and panning

The Dataflow window offers several tools for zooming and panning the display.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zooming with the mouse

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode
by selecting View > Zoom and then use the left mouse button.

Four zoom options are possible by clicking and dragging in different directions:

• Down-Right: Zoom Area (In)

• Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)

• Down-Left: Zoom Selected

• Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

Panning with the mouse

You can pan with the mouse in two ways: 1) enter Pan Mode by selecting View > Pan and
then drag with the left mouse button to move the design; 2) hold down the <Ctrl> key and
drag with the middle mouse button to move the design.

Zoom In
zoom in by a factor
of two from the
current view

Zoom Out
zoom out by a
factor of two from
current view

Zoom Full
zoom out to view
the entire
schematic
ModelSim SE User’s Manual

UM-306 11 - Tracing signals with the Dataflow window

Model
Tracing events (causality)

One of the most useful features of the Dataflow window is tracing an event to see the cause
of an unexpected output. This feature uses the Dataflow window’s embedded wave viewer
(see "The embedded wave viewer" (UM-304) for more details).

In short you identify an output of interest in the Dataflow pane and then use time cursors in
the wave viewer pane to identify events that contribute to the output.

The process for tracing events is as follows:

1 Log all signals before starting the simulation (add log -r /*).

2 After running a simulation for some period of time, open the Dataflow window and the
wave viewer pane.

3 Add a process or signal of interest into the Dataflow window (if adding a signal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

4 Place a time cursor on an edge of interest; the edge should be on a signal that is an output
of the process.

5 Select Trace > Trace next event.

A second cursor is added at the most recent input event.

6 Keep selecting Trace > Trace next event until you've reached an input event of interest.
Note that the signals with the events are selected in the wave pane.

7 Now select Trace > Trace event set.

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. You can change which signals are
followed by changing the selection.

8 To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, select Trace > Trace event reset.
Sim SE User’s Manual

Tracing the source of an unknown (X) UM-307
Tracing the source of an unknown (X)

Another useful debugging option is locating the source of an unknown (X). Unknown
values are most clearly seen in the Wave window—the waveform displays in red when a
value is unknown.

The procedure for tracing an unknown is as follows:

1 Load your design.

2 Log all signals in the design or any signals that may possibly contribute to the unknown
value (log -r /* will log all signals in the design).

3 Add signals to the Wave window or wave viewer pane, and run your design the desired
length of time.

4 Put a cursor on the time at which the signal value is unknown.

5 Add the signal of interest to the Dataflow window, making sure the signal is selected.

6 Select Trace > TraceX, Trace > TraceX Delay, Trace > ChaseX, or Trace > ChaseX
Delay.
ModelSim SE User’s Manual

UM-308 11 - Tracing signals with the Dataflow window

Model
These commands behave as follows:

TraceX / TraceX Delay— Step back to the last driver of an X value. TraceX Delay works
similarly but it steps back in time to the last driver of an X value. TraceX should be used
for RTL designs; TraceX Delay should be used for gate-level netlists with back annotated
delays.

ChaseX / ChaseX Delay — "Jumps" through a design from output to input, following X
values. ChaseX Delay acts the same as ChaseX but also moves backwards in time to the
point where the output value transitions to X. ChaseX should be used for RTL designs;
ChaseX Delay should be used for gate-level netlists with back annotated delays.
Sim SE User’s Manual

Finding objects by name in the Dataflow window UM-309
Finding objects by name in the Dataflow window

Select Edit > Find to search for signal, net, or register names or an instance of a
component.

See "Find in dataflow dialog" (GR-139) for more details.
ModelSim SE User’s Manual

UM-310 11 - Tracing signals with the Dataflow window

Model
Printing and saving the display

Saving a .eps file and printing under UNIX

Select File > Print Postscript to print the Dataflow display in UNIX, or save the waveform
as a .eps file on any platform.

See "Print Postscript dialog" (GR-137) for more details.
Sim SE User’s Manual

Printing and saving the display UM-311
Printing on Windows platforms

Select File > Print to print the Dataflow display or to save the display to a file.

See "Print dialog" (GR-135) for more details.
ModelSim SE User’s Manual

UM-312 11 - Tracing signals with the Dataflow window

Model
Configuring page setup

Clicking the Setup button in the Print Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

See "Dataflow Page Setup dialog" (GR-138) for more details.
Sim SE User’s Manual

Symbol mapping UM-313
Symbol mapping

The Dataflow window has built-in mappings for all Verilog primitive gates (i.e., AND, OR,
etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. This is done through a file containing name pairs, one per
line, where the first name is the concatenation of the design unit and process names,
(DUname.Processname), and the second name is the name of a built-in symbol. For
example:

xorg(only).p1 XOR
org(only).p1 OR
andg(only).p1 AND

Entities and modules are mapped the same way:

AND1 AND
AND2 AND # A 2-input and gate
AND3 AND
AND4 AND
AND5 AND
AND6 AND
xnor(test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

The Dataflow window looks in the current working directory and inside each library
referenced by the design for the file dataflow.bsm (.bsm stands for "Built-in Symbol Map").
It will read all files found.

User-defined symbols

You can also define your own symbols using an ASCII symbol library file format for
defining symbol shapes. This capability is delivered via Concept Engineering’s NlviewTM
widget Symlib format. For more specific details on this widget, see www.model.com/
support/documentation/BOOK/nlviewSymlib.pdf.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to
the Nlview widget to use for symbol lookups. Again, as with the built-in symbols, the DU
name and optional process name is used for the symbol lookup. Here's an example of a
symbol for a full adder:

symbol adder(structural) * DEF \
port a in -loc -12 -15 0 -15 \
pinattrdsp @name -cl 2 -15 8 \
port b in -loc -12 15 0 15 \
pinattrdsp @name -cl 2 15 8 \
port cin in -loc 20 -40 20 -28 \
pinattrdsp @name -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \

pinattrdsp @name -lc 19 26 8 \
port sum out -loc 63 0 51 0 \
pinattrdsp @name -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35 \
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35 \
path 0 -35 0 -7 \
ModelSim SE User’s Manual

http://www.model.com/support/documentation/BOOK/nlviewSymlib.pdf
http://www.model.com/support/documentation/BOOK/nlviewSymlib.pdf

UM-314 11 - Tracing signals with the Dataflow window

Model
path 0 -7 10 0

Port mapping is done by name for these symbols, so the port names in the symbol definition
must match the port names of the Entity|Module|Process (in the case of the process, it’s the
signal names that the process reads/writes).

Important: When you create or modify a symlib file, you must generate a file index.
This index is how the Nlview widget finds and extracts symbols from the file. To
generate the index, select Tools > Create symlib index (Dataflow window) and specify
the symlib file. The file will be rewritten with a correct, up-to-date index.
Sim SE User’s Manual

Configuring window options UM-315
Configuring window options

You can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select Tools > Options to open the Dataflow Options dialog box.

See "Dataflow Options dialog" (GR-140) for more details.
ModelSim SE User’s Manual

UM-316 11 - Tracing signals with the Dataflow window

Model
Sim SE User’s Manual

 UM-317
12 - Profiling performance and memory use

Chapter contents
Introducing performance and memory profiling UM-318

A statistical sampling profiler UM-318
A memory allocation profiler UM-318

Getting started UM-319
Enabling the memory allocation profiler UM-319
Enabling the statistical sampling profiler UM-321
Collecting memory allocation and performance data UM-321
Running the profiler on Windows with FLI/PLI/VPI code . . UM-322

Interpreting profiler data UM-323

Interpreting profiler data UM-324
The Ranked View UM-324
The Call Tree view UM-325
The Structural View UM-326

Viewing profile details UM-327

Analyzing C code performance UM-330

Reporting profiler results UM-331

The ModelSim profiler combines a statistical sampling profiler with a memory allocation
profiler to provide instance specific execution and memory allocation data. It allows you to
quickly determine how your memory is being allocated and easily identify areas in your
simulation where performance can be improved. The profiler can be used at all levels of
design simulation – Functional, RTL, and Gate Level – and has the potential to save hours
of regression test time. In addition, ASIC and FPGA design flows benefit from the use of
this tool.

Platform information

Profiling is not supported on Opteron / Athlon 64 platforms.

Note: The functionality described in this chapter requires a profiler license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.
ModelSim SE User’s Manual

UM-318 12 - Profiling performance and memory use

Model
Introducing performance and memory profiling

The profiler provides an interactive graphical representation of both memory and CPU
usage on a per instance basis. It shows you what part of your design is consuming resources
(CPU cycles or memory), allowing you to more quickly find problem areas in your code.

The profiler enables those familiar with the design and validation environment to find first-
level improvements in a matter of minutes. For example, the statistical sampling profiler
might show the following:

• non-accelerated VITAL library cells that are impacting simulation run time

• objects in the sensitivity list that are not required, resulting in a process that consumes
more simulation time than necessary

• a testbench process that is active even though it is not needed

• an inefficient C module

• random number processes that are consuming simulation resources in a testbench running
in non-random mode

With this information, you can make changes to the VHDL or Verilog source code that will
speed up the simulation.

The memory allocation profiler provides insight into how much memory different parts of
the design are consuming. The two major areas of concern are typically: 1) memory usage
during elaboration, and 2) during simulation. If memory is exhausted during elaboration,
for example, memory profiling may provide insights into what part(s) of the design are
memory intensive. Or, if your HDL or PLI/FLI code is allocating memory and not freeing
it when appropriate, the memory profiler will indicate excessive memory use in particular
portions of the design.

A statistical sampling profiler

The profiler’s statistical sampling profiler samples the current simulation at a user-
determined rate (every <n> milliseconds of real or "wall-clock" time, not simulation time)
and records what is executing at each sample point. The advantage of statistical sampling
is that an entire simulation need not be run to get good information about what parts of your
design are using the most simulation time. A few thousand samples, for example, can be
accumulated before pausing the simulation to see where simulation time is being spent.

The statistical profiler reports only on the samples that it can attribute to user code. For
example, if you use the -nodebug argument to vcom (CR-311) or vlog (CR-358), it cannot
report sample results.

A memory allocation profiler

The profiler’s memory allocation profiler records every memory allocation and
deallocation that takes place in the context of elaborating and simulating the design. It
makes a record of the design element that is active at the time of allocation so memory
resources can be attributed to appropriate parts of the design. This provides insights into
memory usage that can help you re-code designs to, for example, minimize memory use,
correct memory leaks, and change optimization parameters used at compile time.
Sim SE User’s Manual

Getting started UM-319
Getting started

Memory allocation profiling and statistical sampling are enabled separately.

Enabling the memory allocation profiler

To record memory usage during elaboration and simulation, enable memory allocation
profiling when the design is loaded with the -memprof argument to the vsim command.

vsim -memprof <design_unit>

You can use the graphic user interface as follows to perform the same task.

1 Select Simulate > Start Simulation or the Simulate icon, to open the Start Simulation
dialog box.

2 Select the Others tab.

3 Click the Enable memory profiling checkbox to select it.

4 Click OK to load the design with memory allocation profiling enabled.
ModelSim SE User’s Manual

UM-320 12 - Profiling performance and memory use

Model
If memory allocation during elaboration is not a concern, the memory allocation profiler
can be enabled at any time after the design is loaded by doing any one of the following:

• select Tools > Profile > Memory

• use the -m argument with the profile on command (CR-228)

profile on -m

• click the Memory Profiling icon

Handling large files

To allow memory allocation profiling of large designs, where the design itself plus the data
required to keep track of memory allocation exceeds the memory available on the machine,
the memory profiler allows you to route raw memory allocation data to an external file.
This allows you to save the memory profile with minimal memory impact on the simulator,
regardless of the size of your design.

The external data file is created during elaboration by using either the
-memprof+file=<filename> or the -memprof+fileonly=<filename> argument with the
vsim command (CR-373).

The -memprof+file=<filename> option will collect memory profile data during both
elaboration and simulation and save it to the named external file and makes the data
available for viewing and reporting during the current simulation.

The -memprof+fileonly=<filename> option will collect memory profile data during both
elaboration and simulation and save it to only the named external file. No data is saved for
viewing and reporting during the current simulation, which reduces the overall amount of
memory required by memory allocation profiling.

Alternatively, you can save memory profile data from the simulation only by using either
the -m -file <filename> or the -m -fileonly <filename> argument with the profile on
command (CR-228).

The -m -file <filename> option saves memory profile data from simulation to the
designated external file and makes the data available for viewing and reporting during the
current simulation.

The -m -fileonly <filename> option saves memory profile data from simulation to only the
designated external file. No data is saved for viewing and reporting during the current
simulation, which reduces the overall amount of memory required by memory allocation
profiling.

After elaboration and/or simulation is complete, a separate session can be invoked and the
profile data can be read in with the profile reload command (CR-230) for analysis. It should
be noted, however, that this command will clear all performance and memory profiling data
collected to that point (implicit profile clear). Any currently loaded design will be
unloaded (implicit quit -sim), and run-time profiling will be turned off (implicit profile off
-m -p). If a new design is loaded after you have read the raw profile data, then all internal
profile data is cleared (implicit profile clear), but run-time profiling is not turned back on.
Sim SE User’s Manual

Getting started UM-321
Enabling the statistical sampling profiler

To enable the profiler’s statistical sampling profiler prior to a simulation run, do any one of
the following:

• select Tools > Profile > Performance

• use the profile on command (CR-228)

• click the Performance Profiling icon

Collecting memory allocation and performance data

Both memory allocation profiling and statistical sampling occur during the execution of a
ModelSim run command. With profiling enabled, all subsequent run commands will
collect memory allocation data and performance statistics. Profiling results are cumulative
– each run command performed with profiling enabled will add new information to the
data already gathered. To clear this data, select Tools > Profile > Clear Profile Data or
use the profile clear command (CR-225).

With the profiler enabled and a run command initiated, the simulator will provide a
"Profiling" message in the transcript to indicate that profiling has started.

If the statistical sampling profiler and the memory allocation profiler are on, the status bar
will display the number of Profile Samples collected and the amount of memory allocated,
as shown below. Each profile sample will become a data point in the simulation’s
performance profile.

Turning profiling off

You can turn off the statistical sampling profiler or the memory allocation profiler by doing
any one of the following:

• deselect the Performance and/or Memory options in the Tools > Profile menu

• deselect the Performance Profiling and Memory Profiling icons in the toolbar

• use the profile off command (CR-227) with the -p or -m arguments.

Any ModelSim run commands that follow will not be profiled.
ModelSim SE User’s Manual

UM-322 12 - Profiling performance and memory use

Model
Running the profiler on Windows with FLI/PLI/VPI code

If you need to run the profiler under Windows on a design that contains FLI/PLI/VPI code,
add these two switches to the compiling/linking command:

/DEBUG /DEBUGTYPE:COFF

These switches add symbols to the .dll file that the profiler can use in its report.
Sim SE User’s Manual

Interpreting profiler data UM-323
Interpreting profiler data

The utility of the data supplied by the profiler depends in large part on how your code is
written. In cases where a single model or instance consumes a high percentage of
simulation time or requires a high percentage of memory, the statistical sampling profiler
or the memory allocation profiler quickly identifies that object, allowing you to implement
a change that runs faster or requires less memory.

More commonly, simulation time or memory allocation will be spread among a handful of
modules or entities – for example, 30% of simulation time split between models X, Y, and
Z; or 20% of memory allocation going to models A, B, C and D. In such situations, careful
examination and improvement of each model may result in overall speed improvement or
more efficient memory allocation.

There are times, however, when the statistical sampling and memory allocation profilers
tell you nothing more than that simulation time or memory allocation is fairly equally
distributed throughout your design. In such situations, the profiler provides little helpful
information and improvement must come from a higher level examination of how the
design can be changed or optimized.
ModelSim SE User’s Manual

UM-324 12 - Profiling performance and memory use

Model
Viewing profiler results

The profiler provides three views of the collected data – Ranked, Call Tree and Structural.
All three views are enabled by selecting View > Profile > View or by typing view profile
at the VSIM prompt. This opens the Profile pane. The Profile pane includes selection tabs
for the Ranked, Call Tree and Structural views.

The Ranked View

The Ranked view displays the results of the statistical performance profiler and the memory
allocation profiler for each function or instance. By default, ranked profiler results are
sorted by values in the In% column, which shows the percentage of the total samples
collected for each function or instance. You can sort ranked results by any other column by
simply clicking the column heading. Click the down arrow to the left of the Name column
to open a Configure Columns dialog, which allows you to select which columns are to be
hidden or displayed.

The use of colors in the display provides an immediate visual indication of where your
design is spending most of its simulation time. By default, red text indicates functions or
instances that are consuming 5% or more of simulation time.

The Ranked view does not provide hierarchical, function-call information.

Click here to hide or
display columns
Sim SE User’s Manual

Viewing profiler results UM-325
The Call Tree view

By default, profiler results in the Call Tree view are sorted according to the Under(%)
column, which shows the percentage of the total samples collected for each function or
instance and all supporting routines or instances. Sort results by any other column by
clicking the column heading. As in the Ranked view, red object names indicate functions
or instances that, by default, are consuming 5% or more of simulation time.

The Call Tree view differs from the Ranked view in two important respects.

• Entries in the Name column of the Call Tree view are indented in hierarchical order to
indicate which functions or routines call which others.

• A %Parent column in the Call Tree view allows you to see what percentage of a parent
routine’s simulation time is used in which subroutines.

The Call Tree view presents data in a call-stack format that provides more context than does
the ranked view about where simulation time is spent. For example, your models may
contain several instances of a utility function that computes the maximum of 3-delay
values. A Ranked view might reveal that the simulation spent 60% of its time in this utility
function, but would not tell you which routine or routines were making the most use of it.
The Call Tree view will reveal which line is calling the function most frequently. Using this
information, you might decide that instead of calling the function every time to compute
the maximum of the 3-delays, this spot in your VHDL code can be used to compute it just
once. You can then store the maximum delay value in a local variable.

The two %Parent columns in the Call Tree view show the percent of simulation time or
allocated memory a given function or instance is using of its parent’s total simulation time
or available memory. From these columns, you can calculate the percentage of total
simulation time or memory taken up by any function. For example, if a particular parent
entry used 10% of the total simulation time or allocated memory, and it called a routine that
used 80% of its simulation time or memory, then the percentage of total simulation time
spent in, or memory allocated to, that routine would be 80% of 10%, or 8%.

In addition to these differences, the Ranked view displays any particular function only
once, regardless of where it was used. In the Call Tree view, the function can appear
multiple times – each time in the context of where it was used.
ModelSim SE User’s Manual

UM-326 12 - Profiling performance and memory use

Model
The Structural View

The Structural view displays instance-specific performance and memory profile
information in a hierarchical structure format identical to the structural view in the
Workspace. It contains the same information found in the Call Tree view but adds an
additional dimension with which to categorize performance samples and memory
allocation. It shows how call stacks are associated with different instances in the design.
For example, in the illustration that follows, TCL_Flush and TCL_Close appear under both
test_sm and sm_0.

In the Call Tree and Structural views, you can expand and collapse the various levels to
hide data that is not useful to the current analysis and/or is cluttering the display. Click on
the '+' box next to an object name to expand the hierarchy and show supporting functions
and/or instances beneath it. Click the '-' box to collapse all levels beneath the entry.

You can also right click any function or instance in the Call Tree and Structural views to
obtain popup menu selections for rooting the display to the currently selected item, to
ascend the displayed root one level, or to expand and collapse the hierarchy. See Profiler
popup menu commands (GR-195).

Toggling display of call stack entries

By default call stack entries do not display in the Structural tab. To display call stack
entries, right-click in the pane and select Show Calls.
Sim SE User’s Manual

Viewing profile details UM-327
Viewing profile details

The Profiler increases visibility into simulation performance and memory usage with
dynamic links to the Source window and the Profile Details pane. The Profile Details pane
is enabled by selecting View > Profile > View Details or by entering the view
profile_details command at the VSIM prompt. You can also right-click any function or
instance in the Ranked, Call Tree or Structural views to open a popup menu that includes
options for viewing profile details. The following options are available:

View Source

When View Source is selected the Source window opens to the location of the selected
function in the source code.

Function Usage

When Function Usage is selected, the Profile Details pane opens and displays all instances
using the selected function. In the Profile Details pane shown below, all the instances using
function Tcl_Close are displayed. The statistical performance and memory allocation data
shows how much simulation time and memory is used by Tcl_Close in each instance.

Instance Usage

When Instance Usage is selected all instances with the same definition as the selected
instance will be displayed in the Profile Details pane.

View Instantiation

When View Instantiation is selected the Source window opens to the point in the source
code where the selected instance is instantiated.
ModelSim SE User’s Manual

UM-328 12 - Profiling performance and memory use

Model
Callers & Callees

When Callers & Callees is selected, callers and callees for the selected function are
displayed in the Profile Details window. Items above the selected function are callers; items
below are callees. The selected function is distinguished with an arrow on the left and in
'hotForeground' color as shown below.

Display in Call Tree

When Display in Call Tree is selected the Call Tree view of the Profile window expands to
display all occurrences of the selected function and puts the selected function into a search
buffer so you can easily cycle across all occurrences of that function.

Display in Structural

When Display in Structural is selected the Structural view of the Profile window expands
to display all occurrences of the selected function and puts the selected function into a
search buffer so you can easily cycle across all occurrences of that function.
Sim SE User’s Manual

Integration with Source windows UM-329
Integration with Source windows

The Ranked, Call Tree and Structural profile views are all dynamically linked to Source
window. You can double-click any function or instance in the Ranked, Call Tree and
Structural views to bring up that object in a Source window with the selected line
highlighted.

You can perform the same task by right-clicking any function or instance in any one of the
three Profile views and selecting View Source from the popup menu that opens.

When you right-click an instance in the Structural profile view, the View Instantiation
selection will become active in the popup menu. Selecting this option opens the
instantiation in a Source window and highlights it.

The right-click popup menu also allows you to change the root instance of the display,
ascend to the next highest root instance, or reset the root instance to the top level instance.

The selection of a context in the structure tab of the Workspace pane will cause the root
display to be set in the Structural view.
ModelSim SE User’s Manual

UM-330 12 - Profiling performance and memory use

Model
Analyzing C code performance

You can include C code in your design via SystemC, the Verilog PLI/VPI, or the ModelSim
FLI. The profiler can be used to determine the impact of these C modules on simulator
performance. Factors that can affect simulator performance when a design includes C code
are as follows:

• PLI/FLI applications with large sensitivity lists

• Calling operating system functions from C code

• Calling the simulator’s command interpreter from C code

• Inefficient C code

In addition, the Verilog PLI/VPI requires maintenance of the simulator’s internal data
structures as well as the PLI/VPI data structures for portability. (VHDL does not have this
problem in ModelSim because the FLI gets information directly from the simulator.)
Sim SE User’s Manual

Reporting profiler results UM-331
Reporting profiler results

You can create performance and memory profile reports using the Profile Report dialog or
the profile report command (CR-231).

For example, the command

profile report -calltree -file calltree.rpt -cutoff 2

will produce a Call Tree profile report in a text file called calltree.rpt, as shown here.

See the profile report command (CR-231) in the Command Reference for complete details
on profiler reporting options.
ModelSim SE User’s Manual

UM-332 12 - Profiling performance and memory use

Model
Select Tools > Profile > Profile Report to open the Profile Report dialog. From the dialog
below, a Structural profile report will be created from the root instance pathname, /test_sm/
sm_seq0. The report will include function call hierarchy and three structure levels. Both
performance and memory data will be displayed with a cutoff of 3% - meaning, the report
will not contain any functions or instances that do not use 3% or more of simulation time
or memory. The report will be written to a file called profile.out and, since the "View file"
box is selected, it will be generated and displayed in Notepad when the OK button is
clicked.

See Profile Report dialog (GR-93) for details on dialog options.
Sim SE User’s Manual

 UM-333
13 - Measuring code coverage

Chapter contents
Introduction UM-334

Usage flow for code coverage. UM-334
Supported types UM-335
Important notes about coverage statistics UM-336

Enabling code coverage UM-337

Viewing coverage data in the Main window UM-340

Viewing coverage data in the Source window UM-341

Toggle coverage UM-343
Enabling Toggle coverage UM-343
Excluding nodes from Toggle coverage UM-344
Viewing toggle coverage data in the Objects pane UM-344
Toggle coverage reporting UM-344

Filtering coverage data UM-346
Excluding objects from coverage UM-347

Excluding objects from coverage UM-347
Excluding lines/files via the GUI UM-347
Excluding lines/files with pragmas UM-347
Excluding lines/files with a filter file UM-348
Excluding condition and expression udp truth table lines and rows UM-349
Excluding nodes from toggle statistics UM-349

Reporting coverage data UM-350
XML output UM-351
Sample reports. UM-352

Saving and reloading coverage data UM-354
From the command line UM-354
From the graphic interface UM-354
With the vcover utility UM-354

Coverage statistics details UM-355
Condition coverage UM-355
Expression coverage UM-356

Note: The functionality described in this chapter requires a coverage license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.
ModelSim SE User’s Manual

UM-334 13 - Measuring code coverage

Model
Introduction

ModelSim code coverage gives you graphical and report file feedback on which statements,
branches, conditions, and expressions in your source code have been executed. It also
measures bits of logic that have been toggled during execution.

With coverage enabled, ModelSim counts how many times each executable statement,
branch, condition, expression, and logic node in each instance is executed during
simulation. Statement coverage counts the execution of each statement on a line
individually, even if there are multiple statements in a line. Branch coverage counts the
execution of each conditional "if/then/else" and "case" statement and indicates when a true
or false condition has not executed. Condition coverage analyzes the decision made in "if"
and ternary statements and is an extension to branch coverage. Expression coverage
analyzes the expressions on the right hand side of assignment statements, and is similar to
condition coverage. Toggle coverage counts each time a logic node transitions from one
state to another.

Coverage statistics are displayed in the Main, Objects, and Source windows and also can
be output in different text reports (see "Reporting coverage data" (UM-350)). Raw coverage
data can be saved and recalled, or merged with coverage data from the current simulation
(see "Saving and reloading coverage data" (UM-354)).

ModelSim code coverage offers these benefits:

• It is totally non-intrusive because it’s integrated into the ModelSim engine – it doesn’t
require instrumented HDL code as do third-party coverage products.

• It has very little impact on simulation performance (typically 5 to 10 percent).

• It allows you to merge sets of coverage data without requiring elaboration of the design
or a simulation license.

Usage flow for code coverage

The following is an overview of the usage flow for simulating with code coverage. More
detailed instructions are presented in the sections that follow.

1 Compile the design using the -cover bcest argument to vcom (CR-311) or vlog (CR-358).

2 Simulate the design using the -coverage argument to vsim (CR-373).

3 Run the design.

4 Analyze coverage statistics in the Main, Objects, and Source windows.

5 Edit the source code to improve coverage.

6 Re-compile, re-simulate, and re-analyze the statistics and design.
Sim SE User’s Manual

Introduction UM-335
Supported types

ModelSim code coverage supports only certain data types.

VHDL

Supported types are scalar std_ulogic/std_logic. The tool doesn’t currently support bit or
boolean.

Vector and integer and real are not supported directly. However, subexpressions that
involve an unsupported type and a relational operator and produce a boolean result are
supported. These types of subexpressions are treated as an external expression that is first
evaluated and then used as a boolean input to the full condition. The subexpression can look
like:

(var <relop> const)
or
(var1 <relop> var2)

where "var," "var1," and "var2" may be of any type; "<relop>" is a relational operator (e.g.,
<, >, >=); and "const" is a constant of the appropriate type.

Verilog

Supported types are net and one-bit register, but subexpressions of the form:

(var1 <relop> var2)

are supported, where the variables may be multiple-bit registers or integer or real.

SystemC

Code coverage does not work on SystemC design units.
ModelSim SE User’s Manual

UM-336 13 - Measuring code coverage

Model
Important notes about coverage statistics

You should be aware of the following special circumstances related to calculating coverage
statistics:

• When ModelSim optimizes a design, it "removes" unnecessary lines of code (e.g., code
in a procedure that is never called). The lines that are optimized away aren't counted in
the coverage data, and this may cause misleading results. As a result, when you compile
with coverage enabled, ModelSim disables certain optimizations depending on which
coverage types you choose. This produces more accurate statistics but also may slow
simulation.

The table below shows the coverage types and what ModelSim does to optimizations.

• Package bodies are not instance-specific: ModelSim sums the counts for all invocations
no matter who the caller is. Also, all standard and accelerated packages are ignored for
coverage statistics calculation.

• Design units compiled with -nodebug are ignored, as if they were excluded.

Coverage type Effect on optimizations

statement optimizations not disabled automatically; specify -O0 to get most
accurate statistics

branch case statement optimizations are disabled automatically

condition optimizations not disabled automatically

expression all optimizations disabled automatically

toggle optimizations not disabled automatically
Sim SE User’s Manual

Enabling code coverage UM-337
Enabling code coverage

Enabling code coverage is a two-step process:

1 Use the -cover argument to vcom or vlog when you compile your design. This argument
tells ModelSim which coverage statistics to collect. For example:

vlog top.v proc.v cache.v -cover bcesx

Each character after the -cover argument identifies a type of coverage statistic: "b"
indicates branch, "c" indicates condition, "e" indicates expression, "s" indicates
statement, "t" indicates 2-transition toggle, and "x" indicates extended 6-transition toggle
coverage (t and x are mutually exclusive). See "Enabling Toggle coverage" (UM-343) for
details on two other methods for enabling toggle coverage.

2 Use the -coverage argument to vsim when you simulate your design. For example:

vsim -coverage work.top

In ModelSim versions prior to 5.8, you didn’t have to enable coverage at compile time.
Code coverage metrics (statement and branch coverage) were turned on just by using the
-coverage argument to vsim. For backwards compatibility, ModelSim will still display
statement statistics if you simulate with coverage enabled, even if you don’t use the -cover
argument when you compile the design.
ModelSim SE User’s Manual

UM-338 13 - Measuring code coverage

Model
To enable coverage from the graphic interface, first select Compile > Compile Options
and select the Coverage tab. Alternatively, if you are using a project, right-click on a
selected design object (or objects) and select Properties.
Sim SE User’s Manual

Enabling code coverage UM-339
Next, select Simulate > Start Simulation and check Enable code coverage on the Others
tab.
ModelSim SE User’s Manual

UM-340 13 - Measuring code coverage

Model
Viewing coverage data in the Main window

When you simulate a design with code coverage enabled, coverage data is displayed in the
Main, Source, and Objects windows. In the Main window, coverage data displays in five
window panes: Workspace, Missed Coverage, Current Exclusions, Instance Coverage, and
Details.

The table below summarizes the Main window coverage panes. For further details, see
"Code coverage panes" (GR-116).

Workspace

Missed Coverage
Current
Exclusions Coverage Details

Instance

Coverage pane Description

Workspace displays coverage data and graphs for each design object or file

Missed Coverage displays missed coverage for the selected design object or file

Current exclusionsa

a.The Current Exclusions pane does not display by default. Select View > Code Cov-
erage > Current Exclusions to display the pane.

lists all files and lines that are excluded from the current analysis

Instance coverage displays coverage statistics for each instance in a flat format

Details displays details of missed coverage and toggle coverage
Sim SE User’s Manual

Viewing coverage data in the Source window UM-341
Viewing coverage data in the Source window

Source window (GR-199) include two columns for code coverage statistics – the Hits
column and the BC (Branch Coverage) column. These columns provide an immediate
visual indication about how your source code is executing. The default code coverage
indicators are check marks and Xs.

• A green check mark indicates that the statements and/or branches in a particular line have
executed.

• A red X indicates that a statement or branch was not executed.

• An XT indicates the true branch of an conditional statement was not executed.

• An XF indicates the false branch was not executed.

• A green "E" indicates a line of code that has been excluded from code coverage statistics.

When you hover the cursor over a line of code (see line 58 in the illustration above), the
number of statement and branch executions, or "hits," will be displayed in place of the
check marks and Xs. If you prefer, you can display only numbers by selecting Tools >
Code Coverage > Show Coverage Numbers.

Also, when you click in either the Hits or BC column, the Details pane in the Main window
updates to display information on that line.

You can skip to "missed lines" three ways: select Edit > Previous Coverage Miss and Edit
> Next Coverage Miss from the menu bar; click the Previous zero hits and Next zero hits
icons on the toolbar; or press <Shift> - <Tab> (previous miss) or Tab (next miss).
ModelSim SE User’s Manual

UM-342 13 - Measuring code coverage

Model
Controlling data display in a Source window

The Tools > Code Coverage menu contains several commands for controlling coverage
data display in a Source window.

• HIde/Show coverage data toggles the Hits column off and on.

• Hide/Show branch coverage toggles the BC column off and on.

• Hide/Show coverage numbers displays the number of executions in the Hits and BC
columns rather than checkmarks and Xs. When multiple statements occur on a single line
an ellipsis ("...") replaces the Hits number. In such cases, hover the cursor over each
statement to highlight it and display the number of executions for that statement.

• Show coverage By Instance displays only the number of executions for the currently
selected instance (in the Main window workspace).
Sim SE User’s Manual

Toggle coverage UM-343
Toggle coverage

Toggle coverage is the ability to count and collect changes of state on specified nodes,
including Verilog nets and registers and the following VHDL signal types: bit, bit_vector,
std_logic, and std_logic_vector. Toggle coverage is integrated as a metric into the coverage
tool so that the use model and reporting are the same as the other coverage metrics.

There are two modes of toggle coverage operation - standard and extended. Standard toggle
coverage only counts Low or 0 <--> High or 1 transitions. Extended toggle coverage counts
these transitions plus the following:

Z --> 1 or H

Z --> 0 or L

1 or H --> Z

0 or L --> Z

This extended coverage allows a more detailed view of testbench effectiveness and is
especially useful for examining coverage of tri-state signals. It helps to ensure, for example,
that a bus has toggled from high 'Z' to a '1' or '0', and a '1' or '0' back to a high 'Z'.

Toggle coverage will ignore zero-delay glitches.

Enabling Toggle coverage

In the Enabling code coverage (UM-337) section we explained that toggle coverage could be
enabled during compile by using the ’t’ or ’x’ arguments with vcom -cover or vlog -cover.
This section describes two other methods for enabling toggle coverage:

1 using the toggle add command (CR-279)

2 using the Tools > Toggle Coverage > Add or Tools > Toggle Coverage > Extended
selections in the Main window menu.

Using the toggle add command

The toggle add command allows you to initiate toggle coverage at any time from the
command line. (See the Command Reference (CR-279) for correct syntax and arguments.)
Upon the next running of the simulation, toggle coverage data will be collected according
to the arguments employed (i.e., the -full argument enables collection of extended toggle
coverage statistics for the six transitions mentioned above).

Using the Main window menu selections

You can enable toggle coverage by selecting Tools > Toggle Coverage > Add or Tools >
Toggle Coverage > Extended from the Main window menu. These selections allow you
to enable toggle coverage for Selected Signals, Signals in Region, or Signals in Design.

After making a selection, toggle coverage statistics will be captured the next time you run
the simulation.
ModelSim SE User’s Manual

UM-344 13 - Measuring code coverage

Model
Excluding nodes from Toggle coverage

You can disable toggle coverage with the toggle disable command (CR-281). This
command disables toggle statistics collection on the specified nodes and provides a method
of implementing coverage exclusions for toggle coverage. It is intended to be used as
follows:

1 Enable toggle statistics collection for all signals using the -cover t/x argument to vcom
or vlog.

2 Exclude certain signals by disabling them with the toggle disable command.

The toggle enable command (CR-282) re-enables toggle statistics collection on nodes
whose toggle coverage has previously been disabled via the toggle disable command. (See
the Command Reference for correct syntax.)

Viewing toggle coverage data in the Objects pane

Toggle coverage data is displayed in the Objects pane in multiple columns, as shown
below. There is a column for each of the six transition types. Right click any column name
to toggle that column on or off. See "Objects pane toggle coverage" (GR-125) for more
details on each column.

Toggle coverage reporting

The toggle report command (CR-283) displays a list of all nodes and the counts for how
many times they toggled for each state transition type. Also displayed is a summary of the
number of nodes checked, the number that toggled, the number that didn't toggle, and a
percentage that toggled.

The toggle report command is intended to be used as follows:

1 Enable statistics collection with the toggle add command (CR-279).

2 Run the simulation with the run command (CR-252).
Sim SE User’s Manual

Toggle coverage UM-345
3 Produce the report with the toggle report command..

You can produce this same information using the coverage report command (CR-132).

Note: If you want to ensure that you are reporting all signals in the design, use the
-nocollapse argument to vsim when you load your design. Without this argument, the
simulator collapses certain ports that are connected to the same signal in order to improve
performance, and those collapsed signals will not appear in the report. The -nocollapse
argument degrades simulator performance, so it should be used only when it is absolutely
necessary to see all signals in a toggle report.
ModelSim SE User’s Manual

UM-346 13 - Measuring code coverage

Model
Filtering coverage data

You can specify a percentage above or below which you don’t want to see coverage
statistics. For example, you might set a threshhold of 85% such that only objects with
coverage below that percentage are displayed. Anything above that percentage is filtered.

You can set a filter using either a dialog or toolbar icons (see below). To access the dialog,
right-click any object in the Instance Coverage pane and select Set filter.

See "Filter instance list dialog" (GR-92) for details on this dialog.
Sim SE User’s Manual

Excluding objects from coverage UM-347
Excluding objects from coverage

You can exclude statistics collection on any number of lines or files or condition and
expression UDP truth table rows. The line exclusions can be instance-specific or they can
apply to all instances in the enclosing design unit. You can also exclude nodes from toggle
statistics collection using the toggle disable command (CR-281).

There are three methods for excluding objects:

• Use a popup menu command in the GUI

• Insert pragmas into your source code

• Create an exclusion filter file

Excluding lines/files via the GUI

There are several locations in the GUI where you can access commands to exclude lines or
files:

• Right-click a file in Files tab of the Workspace pane and select Code Coverage >
Exclude Selected File from the popup menu.

• Right-click an entry in the Main window Missed Coverage pane and select Exclude
Selection or Exclude Selection For Instance <inst_name> from the popup menu.

• Right-click a line in the Hits column of the Source window and select Exclude Coverage
Line xxx, Exclude Coverage Line xxx For Instance <inst_name>, or Exclude Entire
File.

Excluding lines/files with pragmas

ModelSim also supports the use of source code pragmas to selectively turn coverage off and
on. In Verilog, the pragmas are:

// coverage off
// coverage on

In VHDL, the pragmas are:

-- coverage off
-- coverage on

Bracket the line or lines you want to exclude with these pragmas.

Here are some points to keep in mind about using these pragmas:

• Pragmas are enforced at the design unit level only. For example, if you put "-- coverage
off" before an architecture declaration, all statements in that architecture will be excluded
from coverage; however, statements in all following design units will be included in
statement coverage (until the next "--coverage off").

• Pragmas cannot be used to exclude specific conditions or expressions within lines.
ModelSim SE User’s Manual

UM-348 13 - Measuring code coverage

Model
Excluding lines/files with a filter file

Exclusion filter files specify files and line numbers or condition and expression udp truth
table rows (see below for details) that you wish to exclude from coverage statistics. You
can create the filter file in any text editor or save the current filter in the Current Exclusions
pane by selecting the pane and then choosing File > Save. To load the filter during a future
analysis, select the Current Exclusions pane and select File > Open.

Syntax

<filename>...
[[<range> ...] [<line#> ...]] | all

or

begin instance <instance_name>...
<inst_filename>...
[[<range> ...] [<line#> ...]] | all
end instance

Arguments

<filename>

The name of the file you want to exclude. Required if you are not specifying an instance.
The filter file may include an unlimited number of filename entries, each on its own line.
You may use environment variables in the pathname.

begin instance <instance_name>

The name of an instance for which you want to exclude lines. Required if you don’t
specify <filename>. The filter file may include an unlimited number of instances.

<inst_filename>

The name of the file(s) that compose the instance from which you are excluding lines.
Optional.

<range> ...

A range of line numbers you want to exclude. Optional. Enter the range in "# - #" format.
For example, 32 - 35. You can specify multiple ranges separated by spaces.

<line#> ...

A line number that you want to exclude. Optional. You can specify multiple line numbers
separated by spaces.

all

When used with <filename>, specifies that all lines in the file should be excluded. When
used with <instance_name>, specifies that all lines in the instance and all instances
contained within the specified instance should be excluded. Required if a range or line
number is not specified.

Example

control.vhd
72 - 76 84 93

testring.vhd
all

begin instance /test_delta/chip/bid01_inst
src/delta/buffers.vhd

45-46
Sim SE User’s Manual

Excluding objects from coverage UM-349
end instance

Default filter file

The Tcl preference variable PrefCoverage(pref_InitFilterFrom) specifies a default filter
file to read when a design is loaded with the -coverage switch. By default this variable is
not set. See "Preference variables located in Tcl files" (UM-540) for details on changing this
variable.

A file named workingExclude.cov appears in the design directory when you specify
exclusions in the GUI. This file remains after quitting simulation.

Excluding condition and expression udp truth table lines and rows

You can also use exclusion filter files to exclude condition and expression udp truth table
rows.

Syntax

-c | -e {<ln> <rn|rn1-rn2>...}

Arguments

-c | -e

Determines whether to exclude condition (-c) or expression (-e) udp truth table rows.

<ln> ...

The line number containing the condition or expression. The line number and list of row
numbers are surrounded by curly braces.

<rn | rn1 - rn2>

A space separated list of row numbers or ranges of row numbers referring to the udp truth
table rows that you want excluded.

Excluding lines and rows with the coverage exclude command

You can use the coverage exclude command (CR-129) for direct exclusion of specific lines
in a source file or rows within a truth table.

Excluding nodes from toggle statistics

To exclude nodes from toggle statistics collection, use the toggle disable command (CR-

281).
ModelSim SE User’s Manual

UM-350 13 - Measuring code coverage

Model
Reporting coverage data

You have several options for creating reports on coverage data. To create reports when a
simulation is loaded, use either the coverage report command (CR-132), the toggle report
command (CR-283) (see Toggle coverage reporting (UM-344) in this chapter), or the
Coverage Report dialog.

To create reports when a simulation isn’t loaded, use the vcover report command (CR-322).

To access the Coverage Report dialog, right-click any object in the Files tab of the
Workspace pane and select Code Coverage > Code Coverage Reports; or, select Tools >
Code Coverage > Reports.

See "Coverage Report dialog" (GR-90) for details on this dialog.
Sim SE User’s Manual

Reporting coverage data UM-351
XML output

You can output coverage reports in XML format by checking Write XML Format in the
Coverage Report dialog. The following example is an abbreviated "By Instance" report that
includes line details:

<?xml version="1.0"?>
<report xmlns="http://model.com/coverage"
lines="1"
byInstance="1">
<instance path="/test_delta/chip/control_126k_inst" du="mode_two_control">
<source_table files="1">
<file fn="0" path="C:/modelsim_examples/coverage/Modetwo.v"></file>
</source_table>
<statements active="30" hits="17" percent="56.7"> </statements>
<statement_data>
<stmt fn="0" ln="39" st="1" hits="82"> </stmt>
<stmt fn="0" ln="42" st="1" hits="82"> </stmt>
<stmt fn="0" ln="44" st="1" hits="82"> </stmt>

"fn" stands for filename, "ln" stands for line number, and "st" stands for statement.

There is also an XSL stylesheet named covreport.xsl located in <install_dir>/modeltech/
examples. Use it as a foundation for building your own customized report translators.
ModelSim SE User’s Manual

UM-352 13 - Measuring code coverage

Model
Sample reports

Below are two abbreviated coverage reports with descriptions of select fields.

Zero counts report by file

The "%" field shows the percentage of statements in the file that had zero coverage.
Sim SE User’s Manual

Reporting coverage data UM-353
Instance report with line details

The "Stmt" field identifies the number of statements with zero coverage on that line.

Branch count report snippet

The following report snippet demonstrates two values that require explanation:

Branches with Zeros
#
Line Stmt True False
---- ---- ---- -----

211 1 INF 0
421 1 0 465,987,218
665 1 - 0

Value Meaning

INF coverage value has exceeded ~4 billion (232 -1)

- the field is irrelevant to that particular line of code; for example, line
665 in the report above will never have an entry under the True column
ModelSim SE User’s Manual

UM-354 13 - Measuring code coverage

Model
Saving and reloading coverage data

Raw coverage data can be saved and then reloaded later. Saved data can also be merged
with coverage statistics from the current simulation. You can perform these operations via
the command line, the graphic interface, or the $coverage_save Verilog system task (see
"ModelSim Verilog system tasks and functions" (UM-152)).

From the command line

The coverage save command (CR-135) saves current coverage statistics to a file that can be
reloaded later, preserving instance-specific information.

The coverage reload command (CR-131) seeds the coverage statistics of the current
simulation with the output of a previous coverage save command. This allows you, for
example, to gather statistics from multiple simulation runs into a single report.

From the graphic interface

To save raw coverage data, select Tools > Code Coverage > Save.

To reload previously saved coverage data, select Tools > Coverage > Load.

See "Load Coverage Data dialog" (GR-89) for details on this dialog.

With the vcover utility

The merge utility, vcover merge, allows you to merge sets of coverage data without first
loading a design. It is a standard ModelSim utility that can be invoked from within the GUI
or from the command line.

See the vcover merge command (CR-320) in the ModelSim Command Reference for further
details.
Sim SE User’s Manual

Coverage statistics details UM-355
Coverage statistics details

This section describes how condition and expression coverage statistics are calculated. In
general, condition and expression coverage is limited to boolean and std_logic types. The
coverage utility will analyze conditions and expressions of the form <integer variable>
<op> <integer constant>. It will not, however, produce coverage results when, for example,
two variables are being compared.

Condition coverage

Condition coverage analyzes the decision made in "if" and ternary statements and is an
extension to branch coverage. A truth table is constructed for the condition expression and
counts are kept for each row of the truth table that occurs. For example, the following IF
statement:

Line 180: IF (a or b) THEN x := 0; else x := 1; endif;

reflects this truth table.

Row 1 indicates that (a or b) is true if a is true, no matter what b is. The "counts" column
indicates that this combination has executed 5 times. The '-' character means "don't care."
Likewise, row 2 indicates that the result is true if b is true no matter what a is, and this
combination has executed zero times. Finally, row 3 indicates that the result is always zero
when a is zero and b is zero, and that this combination has executed 8 times.

The truth table body only deals with boolean values. If any inputs are unknown, the result
is set to unknown and is counted.

Values that are vectors are treated as subexpressions external to the table until they resolve
to a boolean result. For example, take the IF statement:

Line 38:IF ((e = '1') AND (bus = "0111")) ...

Truth table for line 180

counts a |b ||(a or b)

Row 1 5 1 - 1

Row 2 0 - 1 1

Row 3 8 0 0 0

unknown 0
ModelSim SE User’s Manual

UM-356 13 - Measuring code coverage

Model
A truth table will be generated in which bus = "0111" is evaluated as a subexpression and
the result, which is boolean, becomes an input to the truth table. The truth table looks as
follows:

Index expressions also serve as inputs to the table. Conditions containing function calls
cannot be handled and will be ignored for condition coverage.

If a line contains a condition that is uncovered - some part of its truth table was not
encountered - that line will appear in the Missed Coverage pane under the Conditions tab.
When that line is selected, the condition truth table will appear in the Details pane and the
line will be highlighted in the Source window.

Condition coverage truth tables are printed in coverage reports when the Condition
Coverage type is selected in the Coverage Reports dialog (see "Reporting coverage data"
(UM-350)) or when the -lines argument is specified in the coverage report command and
one or more of the rows has a zero hit count.

Expression coverage

Expression coverage analyzes the expressions on the right hand side of assignment
statements and counts when these expressions are executed. For expressions that involve
boolean operators, a truth table is constructed and counts are tabulated for conditions
matching rows in the truth table.

For example, take the statement:

Line 236: x <= a xor (not b(0));

This statement results in the following truth table, with associated counts.

Truth table for line 38

counts e |(bus="0111") ||e=’1’) AND (bus = "0111")

Row 1 0 0 - 0

Row 2 10 - 0 0

Row 3 1 1 1 1

unknown 0 0

Truth table 236

counts a |b(0) |(a xor (not b(0))) |||(not b(0))

Row 1 1 0 0 1 1

Row 2 0 0 1 0 0

Row 3 2 1 0 0 1

Row 4 0 1 1 1 0

unknown 0
Sim SE User’s Manual

Coverage statistics details UM-357
If a line contains an expression that is uncovered - some part of its truth table was not
encountered - that line will appear in the Missed Coverage pane under the Expressions tab.
When that line is selected, the expression truth table will appear in the Details pane and the
line will be highlighted in the Source window.

As with condition coverage, expression coverage truth tables are printed in coverage
reports when the Expression Coverage type is selected in the Coverage Reports dialog (see
"Reporting coverage data" (UM-350)) or when the -lines argument is specified in the
coverage report command and one or more of the rows has a zero hit count.
ModelSim SE User’s Manual

UM-358 13 - Measuring code coverage

Model
Sim SE User’s Manual

 UM-359
14 - PSL Assertions

Chapter contents
What are assertions? UM-360

Definition UM-360
Types of assertions UM-360
PSL assertion language UM-361

Using assertions in ModelSim UM-362
Assertion flow UM-362
Limitations UM-362
Using cover directives. UM-363
Processing assume directives in simulation UM-363

Embedding assertions in your code UM-364
Syntax UM-364
Restrictions UM-364
Example UM-364
HDL code inside PSL statements UM-365

Writing assertions in an external file UM-366
Syntax UM-366
Restrictions UM-366
Example UM-366

Understanding clock declarations UM-368
Default clock UM-368
Partially clocked properties UM-368

Understanding assertion names UM-370

Using endpoints in HDL code UM-371

General assertion writing guidelines UM-374

Compiling and simulating assertions UM-375
Embedded assertions UM-375
External assertions file UM-375
Making changes to assertions UM-375
Simulating assertions UM-375

Managing assertions UM-376
Viewing assertions in the Assertions pane UM-376
Enabling/disabling failure and pass checking. UM-377
Enabling/disabling failure and pass logging UM-378
Setting failure and pass limits UM-379
Setting failure action UM-380

Reporting on assertions UM-381
Specifying an alternative output file for assertion messages . . UM-381

Viewing assertions in the Wave window UM-382
Assertion ’signals’. UM-382
ModelSim SE User’s Manual

UM-360 14 - PSL Assertions

Model
What are assertions?

Assertions have been around for a long time but have recently garnered heightened
attention due to the increasing importance of verification in most design flows.
Additionally, the recent introduction of new languages such as PSL have made assertions
more powerful than they have been in the past.

Definition

An assertion is a design property that is evaluated by a tool. A property is a statement about
a design that evaluates to true or false. Properties tell a tool what the design should do, what
it should not do, or what limits exist on its behavior. In effect we are saying, assert that this
property is true; if it is false, tell me.

Types of assertions

Broadly speaking there are three types of assertions: interface/system level assertions,
internal architecture assertions, and functional coverage assessment.

Interface/system-level assertions

Sometimes referred to as "black-box," these types of assertions are high-level properties of
a design that describe only the inputs of a module or system. The interfaces are generally
between major blocks of a design that are owned by different designers. The assertions are
typically placed in an external file and then attached to a design unit.

Verification engineers typically apply this use model. Many organizations prohibit the
verification team from touching synthesizable RTL code. Therefore, they cannot embed
assertions. Also, assertions that are defined in a separate file are easier to reuse at multiple
abstraction levels (architectural, RTL and gate) as the design objects that they reference are
very likely to exist at all levels.

Internal architecture assertions

Called "white-box" or "clear-box," these types of assertions are specific to the internals of
a module. Internal assertions are typically written directly in the HDL code, and the
property verification occurs as the simulation proceeds. The is the most typical use of
assertions and is done for block/module-level verification. Designers typically apply this
use model as it is easy and natural for them to include PSL assertions directly in the HDL
code as the code is being written.

The advantage to internal assertions is errors can be identified very early in a simulation.

Functional coverage assertions

Functional coverage assertions attempt to answer whether you have verified your design.
You create assertions that reflect the functionality described in your specification and then
track those assertions during simulation to see what "functional coverage percentage" you
achieve with your design.

Functional coverage assertions can be applied at any level for which functional
requirements are specified and for which an appropriate testbench/verification
infrastructure has been constructed. For details on measuring functional coverage in
ModelSim, see Chapter 15 - Functional coverage with PSL and ModelSim.
Sim SE User’s Manual

What are assertions? UM-361
PSL assertion language

ModelSim currently supports PSL assertions. PSL is an Accellera standard that was born
out of the Sugar language created at IBM. The syntax and semantics of PSL are described
in the Property Specification Language Reference Manual. We strongly encourage you to
get a copy of this specification.

In the current implementation, ModelSim supports only the simple subset of PSL.
ModelSim SE User’s Manual

UM-362 14 - PSL Assertions

Model
Using assertions in ModelSim

Assertion flow

The following diagram gives a visual depiction of using assertions in ModelSim.

ModelSim lets you embed assertions within your Verilog or VHDL code or supply them in
a separate file. If the assertions are embedded, vlog/vcom will compile them automatically.
If the assertions are in a separate file, you add the -pslfile argument to vlog/vcom. Once
compilation is complete, you invoke the simulator vsim on the design. The simulator
automatically handles any assertions that are present in the design. From there you run the
simulation and debug any assertion failures.

Limitations

The current release has some limitations. Most of these features will be added in future
releases.

• Only the simple subset of PSL is supported.

• Vunits cannot be bound to a design unit instance. They can be bound only to a module,
entity, and architecture.

• There is no support for verification unit inheritance–vunits cannot be derived from other
vunits.

• There is no support for unclocked assertions. Level-sensitive clock expressions are not
allowed.

• There is no support for %for and %if preprocessor commands.

• There is no support for integer, structures, and union in the modeling layer. The only PSL
built-in functions currently supported are rose(), fell(), and prev().

HDL with
embedded assertions

vlog/vcom

or HDL assertions file

vsim

Wave
window

Assertions
pane

vlog/vcom -pslfile
Sim SE User’s Manual

Using assertions in ModelSim UM-363
• There is no support for post-simulation run of assertions (i.e., users cannot run the
assertion engine in post-simulation mode). The Assertions pane is not active in
post-simulation mode either.

• Vprop and vmode in the PSL modeling layer are not supported.

Using cover directives

ModelSim supports PSL functional coverage via the cover directive. See Chapter 15 -
Functional coverage with PSL and ModelSim for details.

Processing assume directives in simulation

Designers use assume directives to constrain static verification. Because they are intended
for formal tools, assume directives have no meaning in simulation. However, ModelSim by
default will treat assume directives as if they are assert directives and simulate them.

You can configure how ModelSim processes assume directives using the -assume and
-noassume arguments to vsim or the SimulateAssumeDirectives (UM-533) variable in the
modelsim.ini file.
ModelSim SE User’s Manual

UM-364 14 - PSL Assertions

Model
Embedding assertions in your code

One way of looking at assertions is as design documentation. In other words, anywhere you
would normally write a comment to capture pre-conditions, constraints or other
assumptions as well as to document the proper functionality of a module, process, or
subprogram, use assertions to capture the information instead.

Syntax

PSL assertions are embedded using metacomments prefixed with 'psl'. For example:

-- psl sequence s0 is {b0; b1; b2};

The PSL statement can be multi-line. For example:

-- psl sequence s0 is
-- {b0; b1; b2};

Note that the second line did not require a 'psl' prefix. Once in PSL context, the parser will
remain there until a PSL statement is terminated with a semicolon (';').

Restrictions

Embedded assertions have the following restriction as to where they can be embedded:

• Assertions can be embedded anywhere inside a Verilog module except initial blocks,
always blocks, tasks, and functions. They cannot be embedded in UDPs.

• Assertions can be embedded only in declarative and statement regions of a VHDL entity
or architecture body.

• In a statement region, assertions can appear at places where concurrent statements may
appear. If they appear in a sequential statement, ModelSim will generate an error.

• Assertions cannot be embedded in VHDL procedures and functions.

Example
library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.numeric_std.all;
 use WORK.constants.all;
entity dram_control is
 generic (BUG : Boolean := TRUE);
 port (clk : IN std_logic;
 reset_n : IN std_logic;
 as_n : IN std_logic;
 addr_in : IN std_logic_vector(AIN-1 downto 0);
 addr_out: OUT std_logic_vector(AOUT-1 downto 0);
 rw : IN std_logic; -- 1 to read; 0 to write
 we_n : OUT std_logic;
 ras_n : OUT std_logic;
 cas_n : OUT std_logic;
 ack : OUT std_logic);
end entity dram_control;

architecture RTL of dram_control is

 type memory_state is (IDLE, MEM_ACCESS, SWITCH, RAS_CAS, OP_ACK, REF1,
Sim SE User’s Manual

Embedding assertions in your code UM-365
REF2);
 signal mem_state : memory_state := IDLE;

 signal col_out : std_logic; -- Output column address
 -- = 1 for column address
 -- = 0 for row address

 signal count : natural range 0 to 2; -- Cycle counter
 signal ref_count : natural range 0 to REF_CNT; -- Refresh counter
 signal refresh : std_logic; -- Refresh request

--psl default clock is rising_edge(clk);
-- Check the write cycle
-- psl property check_write is always {fell(as_n) and not rw} |=> {
-- [*0 to 5];
-- (ras_n = '0' and cas_n = '1' and (addr_out = addr_in(7 downto 4)));
-- (ras_n = '0' and cas_n = '1' and (addr_out = addr_in(3 downto 0)))[*2];
-- (ras_n = '0' and cas_n = '0')[*2];
-- ack};

--psl assert check_write;

begin
.
.
.

HDL code inside PSL statements

Verilog and VHDL statements may be placed in either embedded PSL meta-comments or
in external vunits. When they are embedded in your code, you must use psl begin/end
block meta-comment tags. For example:

// psl begin
// always #10 clk <= ~clk;
// property p = always {a; b};
// assert p;
// end

The HDL statements are parsed along with the PSL statements when you compile the
design with vlog/vcom. If you compile the design using vlog/vcom -nopsl, then neither the
HDL statements nor the PSL statements are parsed.

The only place you can't use PSL block meta-comments are in procedural statement
regions.
ModelSim SE User’s Manual

UM-366 14 - PSL Assertions

Model
Writing assertions in an external file

Assertions in an external file are grouped in vunits and bound to a module or
entity/architecture.

Syntax
vunit name ([<HDL_design_unit>])
{

default clock = <clock_decl>;
<assertions>;
...

}

name – The name of the vunit.

<HDL_design_unit> – The hierarchical name of the module or entity/architecture to which
the vunit is bound. If omitted, the vunit binds to the top-level design unit of the design under
verification.

<clock_decl> – The default clock declaration for the vunit.

<assertions> – Any number of verification directives or PSL statements.

Restrictions

The following restrictions exist when providing assertions in a separate file.

• Vunits can be bound only to a module, entity, or architecture.

• The PSL file and its corresponding HDL file must be compiled together.

Example

The following is an example using Verilog syntax that shows three assertions in one vunit.

vunit check_dram_controller(dram_control)
{
 default clock = rose(clk);

 // declare refresh sequence
 sequence refresh_sequence = {

!cas_n && ras_n && we_n; [*1];
(!cas_n && !ras_n && we_n)[*2];
cas_n && ras_n};

 sequence signal_refresh = {[*24]; rose(refresh)};

 property refresh_rate = always {rose(reset_n) || rose(refresh)} |=>
{signal_refresh};

 assert refresh_rate;

 property check_refresh = always ({rose(refresh)} |->
 {(mem_state != IDLE)[*0:14]; (mem_state == IDLE); refresh_sequence}
 abort fell(reset_n));

 assert check_refresh;
Sim SE User’s Manual

Writing assertions in an external file UM-367
 // Check the write cycle
 property check_write = always {fell(as_n) && !rw} |=> {
 [*0:5];
 (!ras_n && cas_n && (addr_out == addr_in[7:4]));
 (!ras_n && cas_n && (addr_out == addr_in[3:0]))[*2];
 (!ras_n && !cas_n)[*2];
 ack};

 assert check_write;

 // check the read cycle
 property check_read = always {fell(as_n) && rw} |=> {
 [*0:5];
 (!ras_n && cas_n && (addr_out == addr_in[7:4]));
 (!ras_n && cas_n && (addr_out == addr_in[3:0]))[*2];
 (!ras_n && !cas_n)[*3];
 ack};

 assert check_read;
}

Inserting VHDL library and use clauses in external assertions files

You can insert VHDL library and use clauses directly in external assertion files. This lets
you access packages such as Signal Spy even if the design unit (to which the vunit is
attached) doesn’t reference the package.

Here is an example that shows the use of Signal Spy:

library modelsim_lib;
use modelsim_lib.util.all;

vunit top_vunit(test) {
 signal vunit_local_sigA : bit := '0';
 signal vunit_loc_sigB : bit := '0';

 initial_proc: process
 begin
 --spy on a signal in a package
 init_signal_driver("/pack/global_signal", "vunit_loc_sigA");
 --spy on a internal signal
 init_signal_driver("/test/aa/internal_signal_AA", "vunit_loc_sigB");
 wait;
 end process initial_proc;

 assert (vunit_local_sigA -> vunit_loc_sigB);
}

Here are two points to keep in mind about library and use clauses in PSL files:

• If you already have the use clause applied to an entity, then you don’t need to specify it
for the vunit. The vunit gets the entity's complete visibility.

• If you have two vunits in a file and the use clause at the top, the use clause will apply only
to the top vunit. If you want the use clause to apply to both vunits, you have to specify it
twice. This follows the rules for use clauses as they apply to VHDL entities.
ModelSim SE User’s Manual

UM-368 14 - PSL Assertions

Model
Understanding clock declarations

All assertions in ModelSim must be associated with a clock. Unclocked assertions are not
currently supported.

Default clock

Any assertion that is not individually clocked will be clocked by the default clock. For
example:

default clock is rose(clk);
assert always sigb@rose(clk1)
assert always siga;

The first assertion is sensitive to clk1. The second assertion is sensitive to clk (the default
clock).

When using embedded assertions, if you declare an unclocked assertion before defining
default clock, ModelSim produces an error. For example, the following code will produce
an error, assuming there is no other default clock statement above the assertion:

assert always siga;
default clock is rose(clk);

This is not true in the case of assertions located in an external file. The default clock applies
to all unclocked statements regardless of their order within the file.

As noted earlier in "Limitations" (UM-362), default clock declarations are associated with
directives not with named properties or sequences. For example:

default clock is clk1
property p0 is always a->b
default clock is clk2
assert p0

The property p0 is evaluated at every clk2.

Partially clocked properties

The default clock also applies to partially clocked properties. For example:

default clock is rose(clk);
assert always (b0 |-> (b1@rose(clk1)))

In this case, only the RHS of the implication(|->) expression is clocked. The outermost
property is unclocked, so default clock applies to this assertion.

Also, the complete assertion property must be clocked. For example, if you have the
following assertion:

assert always (b0 |-> (b1@rose(clk1)))

and no default clock preceding it, then since part of the property is unclocked, ModelSim
will produce an error.
Sim SE User’s Manual

Understanding clock declarations UM-369
Multi-clocked properties and default clock

You need to be very careful when writing multi-clocked properties that also have a default
clock, or you may produce unexpected results. For example, say you want to write a
property that means the following: if signal a is true at rose(clk1), then at the next rising
edge of clk2, signal b should be true. You would write the property like this:

assert always a -> (b@rose(clk2)) @rose(clk1);

In the above property, the @ operator has more precedence than the always operator, so the
property is interpreted like this:

assert always (a -> (b@rose(clk2)) @rose(clk1));

Note that the always operator is unclocked but the property under always is clocked. This
is acceptable because ModelSim detects that the property is to be checked at every
rose(clk1). However, if you also specified a default clock for the assertion:

default clock is rose(clk3);
assert always a -> (b@rose(clk2)) @rose(clk1);

Then the property is interpreted this way:

assert (always (a -> (b@rose(clk2) @rose(clk1)))@rose(clk3));

Since the outer operator (always in this case) was left unclocked, it is clocked by the default
clock, and the resulting interpretation is not what you intended to write.
ModelSim SE User’s Manual

UM-370 14 - PSL Assertions

Model
Understanding assertion names

PSL 1.1 provides for named directives via the use of a label. You are not allowed to have
a label that duplicates another symbol in the same scope. In other words, you cannot
explicitly label a PSL directive with a name that already exists (as, say, a signal).

In the absence of a label, ModelSim generates assertion names for reporting information
about the assertions. For example:

property p0 is always a -> b;
assert p0;

The name generated for this assertion statement will be assert__p0. Generically, the syntax
of the generated name is:

assert__<property name>.

However, if you write the same assertion in this manner:

assert always a -> b;

there is no property name, so ModelSim will generate a name like assert__0 (i.e., a number
appended to "assert__").
Sim SE User’s Manual

Using endpoints in HDL code UM-371
Using endpoints in HDL code

The PSL endpoint construct is designed to create a symbol in HDL that is set to TRUE for
the simulation time unit when its sequence is matched. HDL code can read the value of this
endpoint.

Examples

The following are two complete examples that demonstrate the use of endpoints in Verilog
and VHDL code, respectively.

Verilog

module top;

reg b1, b2, clk_0, clk_1;
reg test_val_0, test_val_1;

initial clk_0 = 0;
always #50 clk_0 <= ~clk_0;

initial clk_1 = 0;
always #75 clk_1 <= ~clk_1;

// psl begin
// sequence s0(boolean b_f) = {b1[*2]; [*0:2]; b_f};
// endpoint e0(boolean clk_f) = {s0(b2)@rose(clk_f)};
// end

initial
begin
 b1 <= 0; b2 <= 0; //0
 #400; b1 <= 1; b2 <= 0; //400
 #100; b1 <= 1; b2 <= 1; //500
 #200; b1 <= 0; b2 <= 0; //700
 #100; b1 <= 0; b2 <= 1; //800
 #100; b1 <= 0; b2 <= 0; //900
 #300; b1 <= 1; b2 <= 1; //1200
 #100; b1 <= 1; b2 <= 0; //1300
 #300; b1 <= 0; b2 <= 1; //1600
 #300; b1 <= 1; b2 <= 0; //1900
 #200; b1 <= 1; b2 <= 1; //2100
 #100; b1 <= 0; b2 <= 1; //2200
 #100; b1 <= 0; b2 <= 0; //2300
 #100; b1 <= 0; b2 <= 1; //2400
 #100; b1 <= 0; b2 <= 0; //2500
 #100; $finish;
end

initial
 $monitor($time, " test_val_0 = %b test_val_1 = %b", test_val_0,
test_val_1);

always @(clk_0)
 test_val_0 <= e0(clk_0);

always @(clk_1)
begin
 if (e0(clk_1))
ModelSim SE User’s Manual

UM-372 14 - PSL Assertions

Model
 test_val_1 <= 1;
 else
 test_val_1 <= 0;
end

endmodule

VHDL

entity test is
end test;

architecture a of test is
signal clk_0 : bit := '0';
signal clk_1 : bit := '0';
signal b1 : bit := '0';
signal b2 : bit := '0';

begin

clk_0 <= not clk_0 after 50 ns;
clk_1 <= not clk_1 after 75 ns;

-- psl begin
-- sequence s0(Boolean b_f) is {b1[*2]; [*0 to 2]; b_f};
-- endpoint e0(Boolean clk_f) is {s0(b2)}@rose(clk_f);
-- end

endp_0 : process(clk_0)
variable test_val_0 : BOOLEAN;

begin
test_val_0 := e0(clk_0);

end process;

endp_1 : process(clk_1)
variable test_val_1 : bit;

begin
if (e0(clk_1) = true) then

test_val_1 := '1';
else

test_val_1 := '0';
end if;

end process;

process
begin

wait for 400 ns; b1 <= '1'; b2 <= '0'; --400
wait for 100 ns; b1 <= '1'; b2 <= '1'; --500
wait for 200 ns; b1 <= '0'; b2 <= '0'; --700
wait for 100 ns; b1 <= '0'; b2 <= '1'; --800
wait for 100 ns; b1 <= '0'; b2 <= '0'; --900
wait for 300 ns; b1 <= '1'; b2 <= '1'; --1210
wait for 100 ns; b1 <= '1'; b2 <= '0'; --1300
wait for 300 ns; b1 <= '0'; b2 <= '1'; --1600
wait for 300 ns; b1 <= '1'; b2 <= '0'; --1900
wait for 200 ns; b1 <= '1'; b2 <= '1'; --2100
wait for 100 ns; b1 <= '0'; b2 <= '1'; --2200
wait for 100 ns; b1 <= '0'; b2 <= '0'; --2300
wait;

end process;

end a;
Sim SE User’s Manual

Using endpoints in HDL code UM-373
Restrictions

• Endpoints are always associated with a clock (see below). Trying to read an endpoint at
a different clock than its own will always result in reading FALSE.

Clocking endpoints

The clock for an endpoint can be specified via the default clock or by using the @clock
operator. For example, both of the following are acceptable:

// psl default clock = rose(clk);
// psl sequence s0 = {b1[*2]; [*0:2]; b2};
// psl endpoint e0 = s0;

or

// psl sequence s0 = {b1[*2]; [*0:2]; b2};
// psl endpoint e0 = {s0}@rose(clk);

Alternatively, the clock can be specified as a parameter to the endpoint and then be passed
at the point of instantiation. For example:

// psl sequence s0 = {b1[*2]; [*0:2]; b2};
// psl endpoint e0(Boolean clk_f) = {s0}@rose(clk_f);

always @(negedge clk)
my_reg <= e0(clk);
ModelSim SE User’s Manual

UM-374 14 - PSL Assertions

Model
General assertion writing guidelines

Assertion writing can become complicated and confusing. If not written correctly,
assertions can also impact simulator performance. This section offers suggestions for how
to write assertions that are easy to debug and don’t slow down your simulation unduly.

• Keep directives simple. Create named assertions that you then reference from the
directive (e.g., assert check1).

• Keep properties and sequences simple too. Build complex assertions out of simple, short
assertions/sequences.

• Do not use implication with never directives. You will rarely get what you want if you
use implication with a never.

• Create named sequences so you can reuse them in multiple assertions.

• Be aware of "unexpected matches." For example, the following assertion:

assert always a->next(b)->next(c);

will match all of the following conditions (as well as others):

• Keep time ranges specified in sequences as short as possible according to the actual
design property being specified. Avoid long time ranges as this increases the number of
concurrent 'in-flight' checks of the same property and thereby impacts performance.

a

b

c

a

b

c

a

b

c

Sim SE User’s Manual

Compiling and simulating assertions UM-375
Compiling and simulating assertions

Embedded assertions

Embedded assertions are compiled automatically by default. If you have embedded
assertions that you don’t want to compile, use the -nopsl argument to the vlog command
(CR-358) or vcom command (CR-311).

External assertions file

To compile assertions in an external file, invoke the compiler with the -pslfile argument
and specify the assertions file name. For example:

vlog tadder.v adder.v -pslfile adder.psl

The design and its associated assertions file must be compiled in the same invocation.

Making changes to assertions

After making any changes to embedded assertions, you need to re-compile the design unit.
After making changes in separate file assertions, you need to compile both the separate file
and the design unit file to which the vunit binds in the same vlog/vcom invocation.

Simulating assertions

If any assertions were compiled, the vsim command (CR-373) automatically invokes the
assertion engine at runtime. If you do not want to simulate the compiled assertions, use the
-nopsl argument.
ModelSim SE User’s Manual

UM-376 14 - PSL Assertions

Model
Managing assertions

You can manage your assertions via the GUI or by entering commands at the VSIM>
prompt.

Viewing assertions in the Assertions pane

The Assertions pane provides a convenient interface to all of the assertions in the current
simulation. To open the Assertions pane, select View > Debug Windows > Assertions.

The Assertions pane lists all embedded and external assertions that were successfully
compiled and simulated during the current session. The plus sign (’+’) to the left of the
Name field lets you expand the assertion hierarchy to show its elements (properties,
sequences, clocks, and HDL signals).

See "Assertions pane columns" (GR-110) for a description of each field.

You can also view this same information in textual format using the assertion report
command (CR-67).
Sim SE User’s Manual

Managing assertions UM-377
Enabling/disabling failure and pass checking

To enable or disable an assertion’s failure or pass checking from the GUI, right-click an
assertion in the Assertions pane and select Failure Checking or Pass Checking. The
selection acts as a toggle.

To gain greater control over enabling and disabling, right-click an assertion and select
Change (or Edit > Advanced > Change from the menu bar). This opens the Change
assertions dialog.

See "Configure assertions dialog" (GR-114) for more details on this dialog.

You can also enable or disable failure and pass checking using the assertion fail command
(CR-63) or the assertion pass command (CR-65), respectively.

Click here
to enable/
disable
failure or
pass
checking
ModelSim SE User’s Manual

UM-378 14 - PSL Assertions

Model
Enabling/disabling failure and pass logging

To enable or disable an assertion’s failure or pass logging from the GUI, right-click an
assertion in the Assertions pane and select Failure Log or Pass Log. The selection acts as
a toggle.

To gain greater control over logging, right-click an assertion and select Change (or Edit >
Advanced > Change from the menu bar). This opens the Change assertions dialog.

See "Configure assertions dialog" (GR-114) for more details on this dialog.

You can also enable or disable failure and pass logging using the assertion fail command
(CR-63) or the assertion pass command (CR-65), respectively.

Click here
to enable/
disable
failure or
pass
logging
Sim SE User’s Manual

Managing assertions UM-379
Setting failure and pass limits

The failure and pass limits determine how many times ModelSim processes an assertion
before disabling it for the duration of the simulation. By default the number is one for both
failure and pass limits. In other words, once an assertion passes or fails, ModelSim disables
the assertion for the duration of the simulation.

ModelSim continues to respond to other assertions if their limit has not been reached. The
limit applies to the entire simulation session and not to any single simulation run command.

If you want to see more than one assertion failure or pass, right-click the assertion in the
Assertions pane and select Change (or Edit > Advanced > Change from the menu bar).
This opens the Change assertions dialog.

See "Configure assertions dialog" (GR-114) for more details on this dialog.

You can also set failure and pass limits using the assertion fail command (CR-63) or the
assertion pass command (CR-65), respectively.

Click here
to set
failure and
pass limits
ModelSim SE User’s Manual

UM-380 14 - PSL Assertions

Model
Setting failure action

ModelSim can take one of three actions when an assertion fails: it can log the failure in the
transcript and continue the simulation; it can break (pause) the simulation; or it can stop and
exit the simulation. By default the failure action is "continue."

To set assertion action in the GUI, right-click an assertion in the Assertions pane and select
Failure Action and then Continue, Break, or Exit.

To gain greater control over setting failure action, right-click an assertion and select
Change (or Edit > Advanced > Change from the menu bar). This opens the Change
assertions dialog.

See "Configure assertions dialog" (GR-114) for descriptions of the dialog options.

You can also set failure action using the assertion fail command (CR-63).

Click here
to select
failure
action
Sim SE User’s Manual

Reporting on assertions UM-381
Reporting on assertions

Use the assertion report command (CR-67) to print to the transcript a variety of information
about assertions in the current design.

Specifying an alternative output file for assertion messages

You can specify an alternative output file for recording assertion messages. To do this,
invoke vsim with the -assertfile <filename> argument. By default assertion messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file. You can
set a permanent default for the alternative output file using the AssertFile (UM-529) variable
in the modelsim.ini file.
ModelSim SE User’s Manual

UM-382 14 - PSL Assertions

Model
Viewing assertions in the Wave window

You can view assertions in the Wave window just like any other signal in your design.
Simply drag an assertion from the Assertions pane and drop it in the Wave window or right-
click an assertion in the Assertions pane and select Add Wave.

Assertion ’signals’

ModelSim represents assertions as waveforms in the Wave window. The picture below
shows several assertions in a Wave window.

Assertion objects are represented by a magenta triangle. The name of each assertion comes
from the assertion code. The plus sign (’+’) to the left of the name indicates that an assertion
is a composite trace and can be expanded to show its elements (properties, sequences,
clocks, and HDL signals).

The value in the value pane is determined by the active cursor in the waveform pane. The
value will be one of "ACTIVE", "INACTIVE", "PASS" or "FAIL".

The waveform for an assertion represents both continuous and instantaneous information.
The continuous information is whether or not the assertion is active. The assertion is active
anytime it matches the first element in the directive. When active, the trace is raised and
painted green; when inactive it is lowered and painted blue. The instantaneous information
is a pass or fail event on the assertion. These are shown as filled circles above the trace at
the time of the event. A pass is a green circle and a fail is a red circle.

Graphic element Meaning

blue line assertion is inactive

green line assertion is active

green dot assertion passed

red dot assertion failed
Sim SE User’s Manual

 UM-383
15 - Functional coverage with PSL and ModelSim

Chapter contents
Introduction UM-384

Compiling and simulating functional coverage directives. . . . UM-385

Configuring functional coverage directives UM-386
Weighting coverage directives UM-387
Choosing "AtLeast" counts UM-387

Viewing functional coverage statistics. UM-388
Filtering data in the pane UM-388

Viewing coverage directives in the Wave window UM-389
Displaying waveforms in "count" mode UM-390

Reporting functional coverage statistics UM-391
Sample report output UM-392
Understanding aggregated statistics UM-393
Limitations UM-394

Saving functional coverage data UM-395

Reloading/merging functional coverage data UM-396
Merging details UM-396

Clearing functional coverage data UM-397

Creating a reactive testbench with endpoint directives UM-398

PSL delivers basic functional coverage assessment via the cover directive. With ModelSim
you can monitor, accumulate, and display functional coverage statistics on cover directives.
ModelSim SE User’s Manual

UM-384 15 - Functional coverage with PSL and ModelSim

Model
Introduction

The basic steps for using PSL functional coverage directives in ModelSim are as follows:

1 Write PSL sequences and cover directives that define your functional coverage points.

2 Compile the coverage directives along with your design. See "Compiling and simulating
assertions" (UM-375) for details.

3 If necessary configure the directives as described below under "Configuring functional
coverage directives" (UM-386).

4 Run the simulation.

5 View functional coverage statistics either interactively via the GUI or in text-based
reports. See "Viewing functional coverage statistics" (UM-388) below for details.
Sim SE User’s Manual

Compiling and simulating functional coverage directives UM-385
Compiling and simulating functional coverage directives

You compile and simulate functional coverage directives just as you do other PSL
assertions. In short, if the assertions are embedded, they are compiled automatically. If the
assertions are in an external file, use the -pslfile argument to vlog or vcom. Compiled
assertions are read by the simulator automatically.

See "Compiling and simulating assertions" (UM-375) in Chapter 14 - PSL Assertions for
more details.
ModelSim SE User’s Manual

UM-386 15 - Functional coverage with PSL and ModelSim

Model
Configuring functional coverage directives

After writing coverage assertions and compiling them along with the design, you may want
to edit the default configuration for individual directives. Follow these steps to configure
directives:

1 Select View > Debug Windows > Functional Coverage to see your directives in the
Functional Coverage pane.

2 Select Tools > Functional Coverage > Configure or use the fcover configure
command (CR-169).

The configuration dialog lets you enable/disable directive counting and logging, include/
exclude directives from statistics calculation, set a weight for directives, and specify a
minimum number of times a directive should fire. See "Configure cover directives dialog"
(GR-149) for more details.

You can also select directives in the Functional Coverage pane first and then open the
dialog. In that case the "Configure on" section of the dialog is excluded.
Sim SE User’s Manual

Configuring functional coverage directives UM-387
Weighting coverage directives

As shown in the dialog above, you can assign weights to coverage directives. Weighting
affects the aggregated coverage statistics in the currently selected design region. A
directive with a weight of 2 has twice the effect of a directive with a weight of 1.
Conversely, assigning a directive a weight of 0 would omit the directive from the statistics
calculation. See "Understanding aggregated statistics" (UM-393) for more details.

Weighting is a decision you make as to which cover points are more important than others
within the context of the design and the objectives of the test. Weightings might change
based on the simulation run as specific runs could be setup with different test objectives.
The weightings would then be a good way of filtering how close the test came in achieving
its objectives.

Example scenario

The likelihood that each type of bus transaction could be interrupted in a general test is very
low as interrupted transactions are normally rare. You would probably want to ensure that
the design handles the interrupt of all types of transactions and recovers properly from
them. Therefore, you might construct a test such that the stimulus is constrained to ensure
that all types of transactions are generated and that the probability of transactions being
interrupted is relatively high. For that test, the weighting of the interrupted transaction
cover points would probably be higher than the weightings of uninterrupted transactions (or
other coverage criteria).

Choosing "AtLeast" counts

The AtLeast count is a minimum threshold of coverage that gives you some confidence that
the run was meaningful. You don’t need to set this threshold on every directive, but you
should understand which minimal thresholds make for a useful simulation run based on
your design and the objectives of the verification session.

For example, say your test program requires a certain level of PCI traffic during the
simulation. 30 PCI STOP transactions might be a proxy measure of sufficient PCI traffic,
so you would set an AtLeast count of 30 on the "PCI STOP" coverage directive. Another
example might be that a FIFO full should have been achieved at least once as that would
indicate that enough activity occurred during the simulation to reach a key threshold. So,
your "FIFO full" directive would get an AtLeast count of 1.
ModelSim SE User’s Manual

UM-388 15 - Functional coverage with PSL and ModelSim

Model
Viewing functional coverage statistics

After configuring your directives and running the simulation, the Functional Coverage
pane shows accumulated statistics at the current simulation time. To open the pane, select
View > Debug Windows > Functional Coverage.

The pane shows you percentages and a graph for each directive and instance as well as
overall coverage in the status bar at the bottom of the pane. See "Functional Coverage pane"
(GR-143) for a description of each column.

Filtering data in the pane

You can filter the Functional Coverage pane data by selecting Tools > Functional
Coverage > Filter.

The dialog is described in more detail under "Functional coverage filter dialog" (GR-151).

Note that filtering does not affect the gathering of data nor the calculation of aggregated
statistics. It merely affects the data display.
Sim SE User’s Manual

Viewing coverage directives in the Wave window UM-389
Viewing coverage directives in the Wave window

Functional coverage directives can be viewed in the Wave window. To add a coverage
directive to the Wave window, do one of the following:

• Click-and-drag the directive(s) from the Functional Coverage pane to the Wave window.

• Right-click a directive in the Functional Coverage pane and select Add Wave.

When you add directives to the Wave window and then run the simulation, waveforms
display as shown in the graphic below.

The table below summarizes the meaning of various parts of the waveform.

Graphic element Meaning

Blue line Directive is inactive

Green line Directive is active (i.e., under evaluation)

Green triangle A coverage event occurred and the directive passed
ModelSim SE User’s Manual

UM-390 15 - Functional coverage with PSL and ModelSim

Model
Displaying waveforms in "count" mode

You can change the functional coverage waveform so it displays in a decimal integer
format. To change to count-mode format, right-click a functional coverage waveform name
and select Cover Directive View > Count Mode.

Count mode can be useful for gauging the effectiveness of stimulus over time. If all
functional coverage directive counts are static for a long period of time, it may be that the
stimulus is acting in a wasteful manner and can be improved.
Sim SE User’s Manual

Reporting functional coverage statistics UM-391
Reporting functional coverage statistics

To save an ASCII file of the functional coverage statistics, select Tools > Functional
Coverage > Reports or use the fcover report command (CR-173).

The dialog contains a number of options that are described in more detail under "Functional
coverage report dialog" (GR-146).

Here are a couple of points to keep in mind about coverage reporting:

• Filtering doesn't affect the calculation of aggregated statistics. It merely affects the data
displayed in the report.

• A report response of "No match" indicates that the report was empty.
ModelSim SE User’s Manual

UM-392 15 - Functional coverage with PSL and ModelSim

Model
Sample report output

The following is an example of the standard report file output:

Name Design Design File(Line) Count Status
 Unit UnitType

/alpha/cover__0 alpha Verilog test.v(48) 6 Covered
/alpha/cover__1 alpha Verilog test.v(49) 6 Covered
DESIGN UNIT: alpha COVERAGE: 100.0% COVERS: 2

/alpha/inst1/cover__0 beta Verilog test.v(66) 6 Covered
/alpha/inst1/cover__1 beta Verilog test.v(67) 6 Covered
/alpha/inst2/cover__0 beta Verilog test.v(66) 6 Covered
/alpha/inst2/cover__1 beta Verilog test.v(67) 6 Covered
DESIGN UNIT: beta COVERAGE: 100.0% COVERS: 4

/alpha/inst1/instA/cover__0 gamma Verilog test.v(82) 6 Covered
/alpha/inst1/instA/cover__1 gamma Verilog test.v(83) 6 Covered
/alpha/inst1/instA/cover__2 gamma Verilog test.v(86) 0 ZERO
/alpha/inst1/instA/cover__3 gamma Verilog test.v(87) 0 ZERO
/alpha/inst1/instB/cover__0 gamma Verilog test.v(82) 6 Covered
/alpha/inst1/instB/cover__1 gamma Verilog test.v(83) 6 Covered
/alpha/inst1/instB/cover__2 gamma Verilog test.v(86) 0 ZERO
/alpha/inst1/instB/cover__3 gamma Verilog test.v(87) 0 ZERO
/alpha/inst1/instC/cover__0 gamma Verilog test.v(82) 0 ZERO
/alpha/inst1/instC/cover__1 gamma Verilog test.v(83) 0 ZERO
/alpha/inst1/instC/cover__2 gamma Verilog test.v(86) 0 ZERO
/alpha/inst1/instC/cover__3 gamma Verilog test.v(87) 0 ZERO
/alpha/inst2/instA/cover__0 gamma Verilog test.v(82) 6 Covered
/alpha/inst2/instA/cover__1 gamma Verilog test.v(83) 6 Covered
/alpha/inst2/instA/cover__2 gamma Verilog test.v(86) 0 ZERO
/alpha/inst2/instA/cover__3 gamma Verilog test.v(87) 0 ZERO
/alpha/inst2/instB/cover__0 gamma Verilog test.v(82) 6 Covered
/alpha/inst2/instB/cover__1 gamma Verilog test.v(83) 6 Covered
/alpha/inst2/instB/cover__2 gamma Verilog test.v(86) 0 ZERO
/alpha/inst2/instB/cover__3 gamma Verilog test.v(87) 0 ZERO
/alpha/inst2/instC/cover__0 gamma Verilog test.v(82) 0 ZERO
/alpha/inst2/instC/cover__1 gamma Verilog test.v(83) 0 ZERO
/alpha/inst2/instC/cover__2 gamma Verilog test.v(86) 0 ZERO
/alpha/inst2/instC/cover__3 gamma Verilog test.v(87) 0 ZERO
DESIGN UNIT: gamma COVERAGE: 33.3% COVERS: 24

TOTAL COVERAGE: 46.7% COVERS: 30

Formatting output in XML

If you select Use XML Format in the Functional Coverage Report dialog, ModelSim
marks-up the output with XML tags. The table below describes the XML tags:

Tag Meaning

<design> denotes the entire report

<designunit> denotes a design unit

<fcoverage> denotes aggregate coverage as a percentage, for design unit and design
(if aggregated coverage is selected in the report)
Sim SE User’s Manual

Reporting functional coverage statistics UM-393
Understanding aggregated statistics

Aggregated statistics are calculated from all included cover directives in a design or a
design unit regardless of how you choose to display those directives in a report or the GUI.
In other words, the statistics change only when you exclude directives or the state of the
design changes–time advances and new coverage events occur, the design is restarted, or
coverage counts are cleared or reloaded–but never based on how the report or display is
requested.

The "total coverage" statistic is calculated from all enabled cover directives in the design.
The "design unit" coverage is calculated from all enabled cover directives within a given
design unit.

For a set of cover statistics, the coverage percentage is calculated as follows:

N / D

where

N = sum over given covers of: max(count/at_least, 1) * weight

D = sum over given covers of weight

The numerator (N) guarantees that each cover contributes at most its weight to coverage. If
uncovered, the cover contributes a fractional value (possibly 0, if the count is 0.) The
denominator (D) is the sum of all weights.

Example calculation

Let’s use the following report output to illustrate how the formula works:

Name Design Count AtLeast Weight Status
 Unit
/alpha/instance2/coverA beta 6 1 1 Covered

<numfcovers> gives the number of covers in the design and design unit (if aggregated
coverage is selected in the report)

<fcover> denotes a cover directive

<name> denotes the name (design path) of the cover directive

<du> gives the design unit to which the current cover belongs; this is nested
inside the <cover> tag and thus is distinct from the <designunit> tag
which is at a higher level of hierarchy

<dutype> gives the design unit type for the current cover

<source> gives source (line) of the current cover

<count> gives the current count of the current cover

<atleast> gives the at least value of the current cover

<weight> gives the weight of the current cover

<status> gives the status of the current cover

Tag Meaning
ModelSim SE User’s Manual

UM-394 15 - Functional coverage with PSL and ModelSim

Model
/alpha/instance2/coverB beta 6 1 1 Covered
/alpha/instance1/coverA beta 6 8 2 Uncovered
/alpha/instance1/coverB beta 6 8 2 Uncovered
DESIGN UNIT: beta COVERAGE: 83.3% COVERS: 4

In this case the coverage points in instance1 have twice the weight of the points in
instance2. However, the points in instance1 are not completely covered, so they must
contribute fractionally to the coverage: namely, (6/8) or .75. The points in instance2 are
completely covered, so they contribute the maximum value of 1 to the coverage calculation.

Plugging these values into the formula, we get the following calculation:

((6/8)*2 + (6/8)*2 + 1 + 1) / (2 + 2 + 1 + 1)
= (1.5 + 1.5 + 1 + 1) / (2 + 2 + 1 + 1)
= 5 / 6
= 0.8333333...
= 83.3%

Limitations

In some circumstances, processing the PSL cover directive will produce too many matches,
causing the cover count to be too high. The problem occurs with coverage of sequences like
{{a;b} | {c;d}} or {a[*1 to 2]; b[*1 to 2]}. In this instance, the same sequence for the same
input at the same start time may succeed simultaneously in multiple ways. The first
sequence may succeed with a and c followed on the next cycle by b and d; this satisfies both
the simultaneous {a;b} and {c;d} sequences. Logically, the evaluation should increment
the count once and only once for a single directive with a given set of inputs from a given
start time. However, in the above example, the Modelsim 6.0 implementation will
increment the count twice.
Sim SE User’s Manual

Saving functional coverage data UM-395
Saving functional coverage data

You can save the current functional coverage database in order to use it at another time or
merge it with data from another simulation run. To save the current database, select the
Functional Coverage pane and then select Tools > Functional Coverage > Save, or use the
fcover save command (CR-175).
ModelSim SE User’s Manual

UM-396 15 - Functional coverage with PSL and ModelSim

Model
Reloading/merging functional coverage data

Select Tools > Functional Coverage > Reload or use the fcover reload command (CR-

171) to reload a previously saved database file. This command is typically used to seed a
coverage analysis with the results from a previous run. This allows you to gather statistics
from multiple simulation runs and aggregate them into a single set of statistics.

The dialog is described in more detail under "Functional coverage reload dialog" (GR-145).

Merging details

Here are some details to keep in mind about merging databases:

• Directives in a saved database that aren’t in the current simulation are ignored.

• If there are two identical comments then one of them will be ignored during the merge.

• If there are different "at_least" values for two identical directives then the maximum of
them will be taken for the merge.

• If there are different weights for two identical directives then the maximum of them will
be taken for the merge.

• You can delete or add levels of hierarchy in order to aggregate statistics from different
runs of the same design which were performed in different contexts (e.g., block
simulation vs. chip-level simulation vs. system simulation).

• The reloaded database will replace any currently opened database unless you specify the
Merge into existing data option.

Merging results "offline"

The functional coverage load command must be run on a loaded simulation database. If you
want to merge results from runs without first loading a design, use the vcover merge
command (CR-320).
Sim SE User’s Manual

Clearing functional coverage data UM-397
Clearing functional coverage data

You can clear all currently recorded coverage data by selecting Tools > Functional
Coverage > Clear or using the fcover clear command (CR-167).

Important: This command clears all data in the database. It is not possible to clear data
for individual directives.
ModelSim SE User’s Manual

UM-398 15 - Functional coverage with PSL and ModelSim

Model
Creating a reactive testbench with endpoint directives

The PSL endpoint construct is designed to create a symbol in HDL that is set to TRUE for
the simulation time unit when a sequence is matched. The HDL code may test the endpoint
variable thereby allowing the testbench to take some action when a sequence occurs. If the
sequence is used for both an endpoint and a cover directive, this is equivalent to writing a
"reactive" testbench that can alter its behavior when a sequence is covered.

The following example shows an endpoint and a cover that are derived from the same
sequence. Note that the embedded PSL with the endpoint declaration for
endpoint_a_after_b has to appear before the VHDL process in which the
endpoint_a_after_b signal is tested.

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity test is
end entity test;

architecture t of test is
 signal clk : std_logic := '0';
 signal a : std_logic := '0';
 signal b : std_logic := '0';

begin
 clk <= not clk after 50 ns;

process is
begin
 wait until clk'event and clk='1'; a<='0'; b<='1';
 wait until clk'event and clk='1'; a<='1'; b<='0';
 wait until clk'event and clk='1'; a<='1'; b<='1';
 wait until clk'event and clk='1'; a<='0'; b<='0';
 wait;
end process;

-- psl default clock is rose(clk);
-- psl sequence a_after_b is { a; b };
-- psl endpoint endpoint_a_after_b is { a_after_b };
-- psl cover_a_after_b: cover { a_after_b } report "A after B was covered" ;

process is
 variable L: line;
begin
 wait until clk'event and clk='1';
 if endpoint_a_after_b=true then
 write(L,string'("Endpoint a after b occurred!"));
 writeline(output,L);
 end if;
end process;

end architecture t;
Sim SE User’s Manual

 UM-399
16 - C Debug

Chapter contents
Introduction UM-400

Supported platforms and gdb versions UM-401
Running C Debug on Windows platforms UM-401

Setting up C Debug UM-402
Running C Debug from a DO file UM-402

Setting breakpoints. UM-403

Stepping in C Debug UM-405
Known problems with stepping in C Debug UM-405

Finding function entry points with Auto find bp UM-406

Identifying all registered function calls UM-407
Enabling Auto step mode UM-407
Example UM-408
Auto find bp versus Auto step mode UM-409

Debugging functions during elaboration UM-410
FLI functions in initialization mode UM-411
PLI functions in initialization mode UM-411
VPI functions in initialization mode UM-413
Completing design load UM-413

Debugging functions when quitting simulation UM-414

C Debug command reference UM-415

Note: The functionality described in this chapter requires a cdebug license feature in
your ModelSim license file. Please contact your Mentor Graphics sales representative if
you currently do not have such a feature.
ModelSim SE User’s Manual

UM-400 16 - C Debug

Model
Introduction

C Debug allows you to interactively debug FLI/PLI/VPI/SystemC C/C++ source code with
the open-source gdb debugger. Even though C Debug doesn’t provide access to all gdb
features, you may wish to read gdb documentation for additional information.

 Please be aware of the following caveats before using C Debug:

• C Debug is an interface to the open-source gdb debugger. We have not customized gdb
source code, and C Debug doesn’t remove any of the limitations or bugs of gdb.

• We assume that you are competent with C or C++ coding and C debugging in general.

• Recommended usage is that you invoke C Debug once for a given simulation and then
quit both C Debug and ModelSim. Starting and stopping C Debug more than once during
a single simulation session may cause problems for gdb.

• The gdb debugger has a known bug that makes it impossible to set breakpoints reliably
in constructors or destructors. Be careful while stepping through code which may end up
calling constructors of SystemC objects; it may crash the debugger.

• Generally you should not have an existing .gdbinit file. If you do, make certain you
haven’t done any of the following: defined your own commands or renamed existing
commands; used 'set annotate...', 'set height...', 'set width...', or 'set print...'; set
breakpoints or watchpoints.

• To use C Debug on Windows platforms, you must compile your source code with gcc/
g++. See "Running C Debug on Windows platforms" (UM-401) below.
Sim SE User’s Manual

Supported platforms and gdb versions UM-401
Supported platforms and gdb versions

ModelSim ships with the gdb 6.0 debugger. Testing has shown this version to be the most
reliable for SystemC applications. However, for FLI/PLI applications, you can also use a
current installation of gdb if you prefer. C Debug has been tested on these platforms with
these versions of gdb:

To invoke C Debug, you must have the following:

• A cdebug license feature; contact Model Technology sales for more information.

• The correct gdb debugger version for your platform.

Running C Debug on Windows platforms

To use C Debug on Windows, you must compile your C/C++ source code using the
gcc/g++ compiler supplied with ModelSim. Source compiled with Microsoft Visual C++
is not debuggable using C Debug.

The g++ compiler is installed in the following location:

../modeltech/gcc-3.2.3-mingw32/

Platform Required gdb version

32-bit Solaris 2.6, 7, 8, 9 gdb-5.0-sol-2.6

32- and 64-bit HP-UX 11.0a, 11.11b

a.You must install kernel patch PHKL_22568 (or a later patch that supersedes
PHKL_22568) on HP-UX 11.0. If you do not, you will see the following error
message when trying to enable C Debug:
Unable to find dynamic library list.

error from C debugger

b.You must install B.11.11.0306 Gold Base Patches for HP-UX 11i, June
2003.

wdb version 3.3 or later

64-bit HP-UX B.11.22 on Itanium 2 wdb version 4.2

32-bit AIX 4.2, 4.3 gdb-5.1-aix-4.2

32-bit Redhat Linux 7.2 or later /usr/bin/gdb 5.2 or later

32-bit Windows NT and NT-based
platforms (XP, win2K, etc.)

gdb 6.0 from MinGW-32

Opteron / SuSE Linux 9.0 or Redhat
EWS 3.0 (32-bit mode only)

gdb 6.0 or later

x86 / Redhat Linux 6.0 to 7.1 /usr/bin/gdb 5.2 or later

Opteron & Athlon 64 / Redhat EWS 3.0 gdb 5.3.92 or 6.1.1
ModelSim SE User’s Manual

http://www.model.com/contact_us

UM-402 16 - C Debug

Model
Setting up C Debug

Before viewing your SystemC/C/C++ source code, you must set up the C Debug path and
options. To set up C Debug, follow these steps:

1 Compile and link your C code with the -g switch (to create debug symbols) and without
-O (or any other optimization switches you normally use). See Chapter 6 - SystemC
simulation for information on compiling and linking SystemC code. See the FLI
Reference Manual or Appendix D - Verilog PLI / VPI / DPI for information on compiling
and linking C code.

2 Specify the path to the gdb debugger by selecting Tools > C Debug > C Debug Setup.

Select "default" to point at the Model Technology supplied version of gdb or "custom"
to point at a separate installation.

3 Start the debugger by selecting Tools > C Debug > Start C Debug. ModelSim will start
the debugger automatically if you set a breakpoint in a SystemC file.

4 If you are not using gcc, or otherwise haven’t specified a source directory, specify a
source directory for your C code with the following command:

ModelSim> gdb dir <srcdirpath1>[:<srcdirpath2>[...]]

Running C Debug from a DO file

You can run C Debug from a DO file but there is a configuration issue of which you should
be aware. It takes C Debug a few moments to start-up. If you try to execute a run command
before C Debug is fully loaded, you may see an error like the following:

** Error: Stopped in C debugger, unable to real_run mti_run 10us
Error in macro ./do_file line 8
Stopped in C debugger, unable to real_run mti_run 10us
while executing
"run 10us

In your DO file, add the command cdbg_wait_for_starting to alleviate this problem. For
example:

cdbg enable_auto_step on
cdbg set_debugger /modelsim/5.8c_32/common/linux
cdbg debug_on
cdbg_wait_for_starting
run 10us
Sim SE User’s Manual

Setting breakpoints UM-403
Setting breakpoints

Breakpoints in C Debug work much like normal HDL breakpoints. You can create and edit
them with ModelSim commands (bp (CR-75), bd (CR-70), enablebp (CR-158), disablebp
(CR-148)) or via a Source window in the ModelSim GUI (see "File-line breakpoints" (GR-

264)). Some differences do exist:

• The Breakpoints dialog in the ModelSim GUI doesn’t list C breakpoints.

• C breakpoint id numbers require a "c." prefix when referenced in a command.

• When using the bp command (CR-75) to set a breakpoint in a C file, you must use the -c
argument.

Here are some example commands:

bp -c *0x400188d4

Sets a C breakpoint at the hex address 400188d4. Note the ’*’ prefix for the hex address.

bp -c or_checktf

Sets a C breakpoint at the entry to function or_checktf.

bp -c or.c 91

Sets a C breakpoint at line 91 of or.c.

enablebp c.1

Enables C breakpoint number 1.

The graphic below shows a C file with one enabled breakpoint (on line 44) and one disabled
breakpoint (on line 48).
ModelSim SE User’s Manual

UM-404 16 - C Debug

Model
Clicking the red diamonds with your right (third) mouse button pops up a menu with
commands for removing or enabling/disabling the breakpoints

Note: The gdb debugger has a known bug that makes it impossible to set breakpoints
reliably in constructors or destructors. Do not set breakpoints in constructors of SystemC
objects; it may crash the debugger.
Sim SE User’s Manual

Stepping in C Debug UM-405
Stepping in C Debug

Stepping in C Debug works much like you would expect. You use the same buttons and
commands that you use when working with an HDL-only design.

Known problems with stepping in C Debug

The following are known limitations which relate to problems with gdb:

• The gdb debugger has a known bug that makes it impossible to set breakpoints reliably
in constructors or destructors. Be careful while stepping through code which may end up
calling constructors of SystemC objects; it may crash the debugger.

• With some platform and compiler versions, step may actually behave like run -continue
when in a C file. This is a gdb quirk that results from not having any debugging
information when in an internal function to VSIM (i.e., any FLI or VPI function). In these
situations, use step -over to move line-by-line.

Button Menu equivalent Other equivalents

Step
steps the current simulation to
the next statement; if the next
statement is a call to a C function
that was compiled with debug
info, ModelSim will step into the
function

Tools > C Debug > Run
> Step

use the step command at the
CDBG> prompt

see: step (CR-272) command

Step Over
statements are executed but
treated as simple statements
instead of entered and traced
line-by-line; C functions are not
stepped into unless you have an
enabled breakpoint in the C file

Tools > C Debug > Run
> Step -Over

use the step -over command at the
CDBG> prompt

see: step (CR-272) command

Continue Run
continue the current simulation
run until the end of the specified
run length or until it hits a
breakpoint or specified break
event

Tools > C Debug > Run
> Continue

use the run -continue command at
the CDBG> prompt

see: run (CR-252)
ModelSim SE User’s Manual

UM-406 16 - C Debug

Model
Finding function entry points with Auto find bp

ModelSim can automatically locate and set breakpoints at all currently known function
entry points (i.e., PLI/VPI system tasks and functions and callbacks; and FLI subprograms
and callbacks and processes created with mti_CreateProcess). Select Tools > C Debug >
Auto find bp to invoke this feature.

The Auto find bp command provides a "snapshot" of your design when you invoke the
command. If additional callbacks get registered later in the simulation, ModelSim will not
identify these new function entry points unless you re-execute the Auto find bp command.
If you want functions to be identified regardless of when they are registered, use
"Identifying all registered function calls" (UM-407) instead.

The Auto find bp command sets breakpoints in an enabled state and doesn’t toggle that
state to account for step -over or run -continue commands. This may result in unexpected
behavior. For example, say you have invoked the Auto find bp command and you are
currently stopped on a line of code that calls a C function. If you execute a step -over or
run -continue command, ModelSim will stop on the breakpoint set in the called C file.
Sim SE User’s Manual

Identifying all registered function calls UM-407
Identifying all registered function calls

Auto step mode automatically identifies and sets breakpoints at registered function calls
(i.e., PLI/VPI system tasks and functions and callbacks; and FLI subprograms and
callbacks and processes created with mti_CreateProcess). Auto step mode is helpful when
you are not entirely familiar with a design and its associated C routines. As you step
through the design, ModelSim steps into and displays the associated C file when you hit a
C function call in your HDL code. If you execute a step -over or run -continue command,
ModelSim does not step into the C code.

When you first enable Auto step mode, ModelSim scans your design and sets enabled
breakpoints at all currently known function entry points. As you step through the
simulation, Auto step continues looking for newly registered callbacks and sets enabled
breakpoints at any new entry points it identifies. Once you execute a step -over or
run -continue command, Auto step disables the breakpoints it set, and the simulation
continues running. The next time you execute a step command, the automatic breakpoints
are re-enabled and Auto step sets breakpoints on any new entry points it identifies.

Note that Auto step does not disable user-set breakpoints.

Enabling Auto step mode

To enable Auto step mode, follow these steps:

1 Configure C Debug as described in "Setting up C Debug" (UM-402).

2 Select Tools > C Debug > Enable auto step.

3 Load and run your design.
ModelSim SE User’s Manual

UM-408 16 - C Debug

Model
Example

The graphic below shows a simulation that has stopped at a user-set breakpoint on a PLI
system task.

Because Auto step mode is enabled, ModelSim automatically sets a breakpoint in the
underlying xor_gate.c file. If you click the step button at this point, ModelSim will step into
that file.
Sim SE User’s Manual

Identifying all registered function calls UM-409
Auto find bp versus Auto step mode

As noted in "Finding function entry points with Auto find bp" (UM-406), the Auto find bp
command also locates and sets breakpoints at function entry points. Note the following
differences between Auto find bp and Auto step mode:

• Auto find bp provides a "snapshot" of currently known function entry points at the time
you invoke the command. Auto step mode continues to locate and set automatic
breakpoints in newly registered function calls as the simulation continues. In other
words, Auto find bp is static while Auto step mode is dynamic.

• Auto find bp sets automatic breakpoints in an enabled state and doesn’t change that state
to account for step-over or run-continue commands. Auto step mode enables and disables
automatic breakpoints depending on how you step through the design. In cases where you
invoke both features, Auto step mode takes precedence over Auto find bp. In other words,
even if Auto find bp has set enabled breakpoints, if you then invoke Auto step mode, it
will toggle those breakpoints to account for step-over and run-continue commands.
ModelSim SE User’s Manual

UM-410 16 - C Debug

Model
Debugging functions during elaboration

Initialization mode allows you to examine and debug functions that are called during
elaboration (i.e., while your design is in the process of loading). When you select this mode,
ModelSim sets special breakpoints for foreign architectures and PLI/VPI modules that
allow you to set breakpoints in the initialization functions. When the design finishes
loading, the special breakpoints are automatically deleted, and any breakpoints that you set
are disabled (unless you specify Keep user init bps in the C debug setup dialog).

To run C Debug in initialization mode, follow these steps:

1 Start C Debug by selecting Tools > C Debug > Start C Debug before loading your
design.

2 Select Tools > C Debug > Init mode.

3 Load your design.

As the design loads, ModelSim prints to the Transcript the names and/or hex addresses of
called functions. For example the Transcript below shows a function pointer to a foreign
architecture:

To set a breakpoint on that function, you would type:

bp -c *0x4001b571

or

bp -c and_gate_init
Sim SE User’s Manual

Debugging functions during elaboration UM-411
ModelSim in turn reports that it has set a breakpoint at line 37 of the and_gate.c file. As
you continue through the design load using run -continue, ModelSim hits that breakpoint
and displays the file and associated line in a Source window.

FLI functions in initialization mode

There are two kinds of FLI functions that you may encounter in initialization mode. The
first is a foreign architecture which was shown above. The second is a foreign function.
ModelSim produces a Transcript message like the following when it encounters a foreign
function during initialization:

Shared object file './all.sl'
Function name 'in_params'
Function ptr '0x4001a950'. Foreign function.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set a breakpoint on the function using either the function name
(i.e., bp -c in_params) or the function pointer (i.e., bp -c *0x4001a950). Note, however, that
foreign functions aren’t called during initialization. You would hit the breakpoint only
during runtime and then only if you enabled the breakpoint after initialization was complete
or had specified Keep user init bps in the C debug setup dialog.

PLI functions in initialization mode

There are two methods for registering callback functions in the PLI: 1) using a veriusertfs
array to define all usertf entries; and 2) adding an init_usertfs function to explicitly register
each usertfs entry (see "Registering DPI applications" (UM-565) for more details). The
messages ModelSim produces in initialization mode vary depending on which method you
use.
ModelSim SE User’s Manual

UM-412 16 - C Debug

Model
ModelSim produces a Transcript message like the following when it encounters a
veriusertfs array during initialization:

vsim -pli ./veriuser.sl mux_tb
Loading ./veriuser.sl
Shared object file './veriuser.sl'
veriusertfs array - registering calltf
Function ptr '0x40019518'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()
cont
Shared object file './veriuser.sl'
veriusertfs array - registering checktf
Function ptr '0x40019570'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()
cont
Shared object file './veriuser.sl'
veriusertfs array - registering sizetf
Function ptr '0x0'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()
cont
Shared object file './veriuser.sl'
veriusertfs array - registering misctf
Function ptr '0x0'. $or_c.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set breakpoints on non-null callbacks using the function pointer
(e.g., bp -c *0x40019570). You cannot set breakpoints on null functions. The sizetf and
misctf entries in the example above are null (the function pointer is '0x0').

ModelSim reports the entries in multiples of four with at least one entry each for calltf,
checktf, sizetf, and misctf. Checktf and sizetf functions are called during initialization but
calltf and misctf are not called until runtime.

The second registration method uses init_usertfs functions for each usertfs entry.
ModelSim produces a Transcript message like the following when it encounters an
init_usertfs function during initialization:

Shared object file './veriuser.sl'
Function name 'init_usertfs'
Function ptr '0x40019bec'. Before first call of init_usertfs.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set a breakpoint on the function using either the function name
(i.e., bp -c init_usertfs) or the function pointer (i.e., bp -c *0x40019bec). ModelSim will hit
this breakpoint as you continue through initialization.
Sim SE User’s Manual

Debugging functions during elaboration UM-413
VPI functions in initialization mode

VPI functions are registered via routines placed in a table named vlog_startup_routines (see
"Registering VPI applications" (UM-563) for more details). ModelSim produces a Transcript
message like the following when it encounters a vlog_startup_routines table during
initialization:

Shared object file './vpi_test.sl'
vlog_startup_routines array
Function ptr '0x4001d310'. Before first call using function pointer.
C breakpoint c.1
0x0814fc96 in mti_cdbg_shared_objects_loaded ()

You can set a breakpoint on the function using the function pointer
(i.e., bp -c *0x4001d310). ModelSim will hit this breakpoint as you continue through
initialization.

Completing design load

If you are through looking at the initialization code you can select Tools > C Debug >
Complete load at any time, and ModelSim will continue loading the design without
stopping. The one exception to this is if you have set a breakpoint in a LoadDone callback
and also specified Keep user init bps in the "C Debug setup dialog" (GR-99).
ModelSim SE User’s Manual

UM-414 16 - C Debug

Model
Debugging functions when quitting simulation

Stop on quit mode allows you to debug functions that are called when the simulator exits.
Such functions include those referenced by an mti_AddQuitCB function in FLI code,
misctf functions called by a quit or $finish in PLI code, or cbEndofSimulation functions
called by a quit or $finish in VPI code.

To enable Stop on quit mode, follow these steps:

1 Start C Debug by selecting Tools > C Debug > Start C Debug.

2 Select Tools > C Debug > C Debug Setup.

3 Select Stop on quit in the C Debug setup dialog.

With this mode enabled, if you have set a breakpoint in a quit callback function, C Debug
will stop at the breakpoint after you issue the quit command in ModelSim. This allows you
to step and examine the code in the quit callback function.

Invoke run -continue when you are done looking at the C code.

Note that whether or not a C breakpoint was hit, when you return to the VSIM> prompt,
you’ll need to quit C Debug by selecting Tools > C Debug > Quit C Debug before finally
quitting the simulation.
Sim SE User’s Manual

C Debug command reference UM-415
C Debug command reference

The table below provides a brief description of the commands that can be invoked when C
Debug is running. Follow the links to the ModelSim SE Command Reference for complete
command syntax.

Command Description Corresponding menu command

bd (CR-70) deletes a previously set C breakpoint right click breakpoint in Source
window and select Remove Breakpoint

bp (CR-75) -c sets a C breakpoint click the desired line number in the
Source window

change (CR-81) changes the value of a C variable none

describe (CR-147) prints the type information of a C
variable

select the C variable name in the Source
window and select Tools > Describe or
right click and select Describe.

disablebp (CR-148) disables a previously set C breakpoint right click breakpoint in Source
window and select Disable Breakpoint

enablebp (CR-158) enables a previously disabled C
breakpoint

right click breakpoint in Source
window and select Enable Breakpoint

examine (CR-162) prints the value of a C variable select the C variable name in the Source
window and select Tools > Examine or
right click and select Examine

gdb dir (CR-183) sets the source directory search path for
the C debugger

none

pop (CR-219) moves the specified number of call
frames up the C callstack

none

push (CR-237) moves the specified number of call
frames down the C callstack

none

run (CR-252) -continue continues running the simulation after
stopping

click the run -continue button on the
Main or Source window toolbar

run (CR-252) -finish continues running the simulation until
control returns to the calling function

Tools > C Debug > Run > Finish

show (CR-267) displays the names and types of the local
variables and arguments of the current C
function

Tools > C Debug > Show

step (CR-272) single step in the C debugger to the next
executable line of C code; step goes into
function calls, whereas step -over does
not

click the step or step -over button on the
Main or Source window toolbar

tb (CR-274) displays a stack trace of the C call
stack

Tools > C Debug > Traceback
ModelSim SE User’s Manual

UM-416 16 - C Debug

Model
Sim SE User’s Manual

 UM-417
17 - Signal Spy

Chapter contents
Introduction UM-418

Designed for testbenches UM-418

init_signal_driver UM-419

init_signal_spy UM-422

signal_force UM-425

signal_release UM-427

$init_signal_driver UM-429

$init_signal_spy UM-432

$signal_force UM-434

$signal_release UM-436

This chapter describes the Signal SpyTM procedures and system tasks. These allow you to
monitor, drive, force, and release hierarchical objects in VHDL or mixed designs.
ModelSim SE User’s Manual

UM-418 17 - Signal Spy

Model
Introduction

The Verilog language allows access to any signal from any other hierarchical block without
having to route it via the interface. This means you can use hierarchical notation to either
assign or determine the value of a signal in the design hierarchy from a testbench. This
capability fails when a Verilog testbench attempts to reference a signal in a VHDL block
or reference a signal in a Verilog block through a VHDL level of hierarchy.

This limitation exists because VHDL does not allow hierarchical notation. In order to
reference internal hierarchical signals, you have to resort to defining signals in a global
package and then utilize those signals in the hierarchical blocks in question. But, this
requires that you keep making changes depending on the signals that you want to reference.

The Signal Spy procedures and system tasks overcome the aforementioned limitations.
They allow you to monitor (spy), drive, force, or release hierarchical objects in a VHDL or
mixed design.

The VHDL procedures are provided via the "Util package" (UM-96) within the modelsim_lib
library. To access the procedures you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

The Verilog tasks are available as built-in "System tasks and functions" (UM-146). The table
below shows the VHDL procedures and their corresponding Verilog system tasks.

Designed for testbenches

Signal Spy limits the portability of your code. HDL code with Signal Spy procedures or
tasks works only in ModelSim, not other simulators. We therefore recommend using Signal
Spy only in testbenches, where portability is less of a concern, and the need for such a tool
is more applicable.

VHDL procedures Verilog system tasks

init_signal_driver (UM-419) $init_signal_driver (UM-429)

init_signal_spy (UM-422) $init_signal_spy (UM-432)

In this example, the value of /top/uut/
inst1/sig1 is mirrored onto /top/
top_sig1. signal_force (UM-425)

$signal_force (UM-434)

signal_release (UM-427) $signal_release (UM-436)
Sim SE User’s Manual

init_signal_driver UM-419
init_signal_driver

The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net (called
the src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This
allows you to drive signals or nets at any level of the design hierarchy from within a VHDL
architecture (e.g., a testbench).

The init_signal_driver procedure drives the value onto the destination signal just as if the
signals were directly connected in the HDL code. Any existing or subsequent drive or force
of the destination signal, by some other means, will be considered with the
init_signal_driver value in the resolution of the signal.

Call only once

The init_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular
pair of signals. Once init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_driver calls in a VHDL process. You
need to code the VHDL process correctly so that it is executed only once. The VHDL
process should not be sensitive to any signals and should contain only init_signal_driver
calls and a simple wait statement. The process will execute once and then wait forever. See
the example below.

Syntax
init_signal_driver(src_object, dest_object, delay, delay_type, verbose)

Returns

Nothing
ModelSim SE User’s Manual

UM-420 17 - Signal Spy

Model
Arguments

Related procedures

init_signal_spy (UM-422), In this example, the value of /top/uut/inst1/sig1 is mirrored onto
/top/top_sig1. signal_force (UM-425), signal_release (UM-427)

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to mti_transport, the setting will be ignored and the delay type will be mti_inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.

delay time Optional. Specifies a delay relative to the time
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then a delay of zero is
assumed.

delay_type del_mode Optional. Specifies the type of delay that will
be applied. The value must be either
mti_inertial or mti_transport. The default is
mti_inertial.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no
message.
Sim SE User’s Manual

init_signal_driver UM-421
Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clk0 : std_logic;

begin

gen_clk0 : process
begin

clk0 <= '1' after 0 ps, '0' after 20 ps;
wait for 40 ps;

end process gen_clk0;

drive_sig_process : process
begin

init_signal_driver("clk0", "/testbench/uut/blk1/clk", open, open, 1);
init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100 ps,

mti_transport);
wait;

end process drive_sig_process;

...

end;

The above example creates a local clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed.
The open entries allow the default delay and delay_type while setting the verbose
parameter to a 1. The .../blk2/clk will match the local clk0 but be delayed by 100 ps.
ModelSim SE User’s Manual

UM-422 17 - Signal Spy

Model
init_signal_spy

The init_signal_spy() procedure mirrors the value of a VHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a VHDL architecture (e.g., a testbench).

The init_signal_spy procedure only sets the value onto the destination signal and does not
drive or force the value. Any existing or subsequent drive or force of the destination signal,
by some other means, will override the value that was set by init_signal_spy.

Call only once

The init_signal_spy procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_spy once for a particular pair of
signals. Once init_signal_spy is called, any change on the source signal will mirror on the
destination signal until the end of the simulation unless.

We recommend that you place all init_signal_spy calls in a VHDL process. You need to
code the VHDL process correctly so that it is executed only once. The VHDL process
should not be sensitive to any signals and should contain only init_signal_spy calls and a
simple wait statement. The process will execute once and then wait forever, which is the
desired behavior. See the example below.

Syntax
init_signal_spy(src_object, dest_object, verbose)

Returns

Nothing
Sim SE User’s Manual

init_signal_spy UM-423
Arguments

Related procedures

init_signal_driver (UM-419), In this example, the value of /top/uut/inst1/sig1 is mirrored
onto /top/top_sig1. signal_force (UM-425), signal_release (UM-427)

Limitations

• When mirroring the value of a Verilog register/net onto a VHDL signal, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register. Use
the path separator to which your simulation is
set (i.e., "/" or "."). A full hierarchical path
must begin with a "/" or ".". The path must be
contained within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object’s value
is mirrored onto the dest_object. Default is 0,
no message.
ModelSim SE User’s Manual

UM-424 17 - Signal Spy

Model
Example
library ieee;
library modelsim_lib;
use ieee.std_logic_1164.all;
use modelsim_lib.util.all;
entity top is
end;

architecture only of top is
signal top_sig1 : std_logic;

begin
...
spy_process : process
begin

init_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",1,1);
wait;

end process spy_process;
...
spy_enable_disable : process(enable_sig)
begin

if (enable_sig = '1') then
enable_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",0);

elseif (enable_sig = '0')
disable_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",0);

end if;
end process spy_enable_disable;
...

end;

In this example, the value of /top/uut/inst1/sig1 is mirrored onto /top/top_sig1.
Sim SE User’s Manual

signal_force UM-425
signal_force

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within a VHDL architecture (e.g., a
testbench).

A signal_force works the same as the force command (CR-180) with the exception that you
cannot issue a repeating force. The force will remain on the signal until a signal_release, a
force or release command, or a subsequent signal_force is issued. Signal_force can be
called concurrently or sequentially in a process.

Syntax
signal_force(dest_object, value, rel_time, force_type, cancel_period,
verbose)

Returns

Nothing

Arguments

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

value string Required. Specifies the value to which the
dest_object is to be forced. The specified
value must be appropriate for the type.

rel_time time Optional. Specifies a time relative to the
current simulation time for the force to occur.
The default is 0.

force_type forcetype Optional. Specifies the type of force that will
be applied. The value must be one of the
following; default, deposit, drive, or freeze.
The default is "default" (which is "freeze" for
unresolved objects or "drive" for resolved
objects). See the force command (CR-180) for
further details on force type.
ModelSim SE User’s Manual

UM-426 17 - Signal Spy

Model
Related procedures

init_signal_driver (UM-419), init_signal_spy (UM-422), signal_release (UM-427)

Limitations

You cannot force bits or slices of a register; you can force only the entire register.

Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
begin

force_process : process
begin

signal_force("/testbench/uut/blk1/reset", "1", 0 ns, freeze, open, 1);
signal_force("/testbench/uut/blk1/reset", "0", 40 ns, freeze, 2 ms, 1);
wait;

end process force_process;

...

end;

The above example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced
to a "0", 2 ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to
use the keyword "open" as a placeholder for the skipped parameter(s). The first
signal_force procedure illustrates this, where an "open" for the cancel_period parameter
means that the default value of -1 ms is used.

cancel_period time Optional. Cancels the signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of a time unit. A value of zero
cancels the force at the end of the current time
period. Default is -1 ms. A negative value
means that the force will not be cancelled.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced on the dest_object at the specified time.
Default is 0, no message.

Name Type Description
Sim SE User’s Manual

signal_release UM-427
signal_release

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers or nets at any level of the design hierarchy from within a VHDL architecture (e.g.,
a testbench).

A signal_release works the same as the noforce command (CR-208). Signal_release can be
called concurrently or sequentially in a process.

Syntax
signal_release(dest_object, verbose)

Returns

Nothing

Arguments

Related procedures

init_signal_driver (UM-419), init_signal_spy (UM-422), In this example, the value of /top/uut/
inst1/sig1 is mirrored onto /top/top_sig1. signal_force (UM-425)

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and the time of the release. Default is
0, no message.
ModelSim SE User’s Manual

UM-428 17 - Signal Spy

Model
Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is

signal release_flag : std_logic;

begin

stim_design : process
begin

...
wait until release_flag = '1';
signal_release("/testbench/dut/blk1/data", 1);
signal_release("/testbench/dut/blk1/clk", 1);
...

end process stim_design;

...

end;

The above example releases any forces on the signals data and clk when the signal
release_flag is a "1". Both calls will send a message to the transcript stating which signal
was released and when.
Sim SE User’s Manual

$init_signal_driver UM-429
$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
(called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). This allows you to drive signals or nets at any level of the design hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_driver system task drives the value onto the destination signal just as if
the signals were directly connected in the HDL code. Any existing or subsequent drive or
force of the destination signal, by some other means, will be considered with the
$init_signal_driver value in the resolution of the signal.

Call only once

The $init_signal_driver system task creates a persistent relationship between the source and
destination signals. Hence, you need to call $init_signal_driver only once for a particular
pair of signals. Once $init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all $init_signal_driver calls in a Verilog initial block.
See the example below.

Syntax
$init_signal_driver(src_object, dest_object, delay, delay_type, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
ModelSim SE User’s Manual

UM-430 17 - Signal Spy

Model
Related tasks

$init_signal_spy (UM-432), $signal_force (UM-434), $signal_release (UM-436)

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to 1 (transport), the setting will be ignored, and the delay type will be inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

• Verilog memories (arrays of registers) are not supported.

delay integer, real, or
time

Optional. Specifies a delay relative to the time
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then a delay of zero is
assumed.

delay_type integer Optional. Specifies the type of delay that will
be applied. The value must be either 0
(inertial) or 1 (transport). The default is 0.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no
message.

Name Type Description
Sim SE User’s Manual

$init_signal_driver UM-431
Example
`timescale 1 ps / 1 ps

module testbench;

reg clk0;

initial begin
clk0 = 1;
forever begin
#20 clk0 = ~clk0;

end
end

initial begin
$init_signal_driver("clk0", "/testbench/uut/blk1/clk", , , 1);
$init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100, 1);

end

...

endmodule

The above example creates a local clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed.
The .../blk2/clk will match the local clk0 but be delayed by 100 ps. For the second call to
work, the .../blk2/clk must be a VHDL based signal, because if it were a Verilog net a 100
ps inertial delay would consume the 40 ps clock period. Verilog nets are limited to only
inertial delays and thus the setting of 1 (transport delay) would be ignored.
ModelSim SE User’s Manual

UM-432 17 - Signal Spy

Model
$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog register/
net (called the src_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_spy system task only sets the value onto the destination signal and does
not drive or force the value. Any existing or subsequent drive or force of the destination
signal, by some other means, will override the value set by $init_signal_spy.

Call only once

The $init_signal_spy system task creates a persistent relationship between the source and
the destination signal. Hence, you need to call $init_signal_spy only once for a particular
pair of signals. Once $init_signal_spy is called, any change on the source signal will mirror
on the destination signal until the end of the simulation.

We recommend that you place all $init_signal_spy tasks in a Verilog initial block. See the
example below.

Syntax
$init_signal_spy(src_object, dest_object, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
Sim SE User’s Manual

$init_signal_spy UM-433
Related tasks

$init_signal_driver (UM-429), $signal_force (UM-434), $signal_release (UM-436)

Limitations

• When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

Example
module top;
...
reg top_sig1;
reg enable_reg;
...
initial

begin
$init_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",1,1);
end

always @ (posedge enable_reg)
begin
$enable_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",0);
end

always @ (negedge enable_reg)
begin
$disable_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",0);
end

...
endmodule

In this example, the value of .top.uut.inst1.sig1 is mirrored onto .top.top_sig1.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
Verilog register or VHDL signal. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object’s value
is mirrored onto the dest_object. Default is 0,
no message.

Name Type Description
ModelSim SE User’s Manual

UM-434 17 - Signal Spy

Model
$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register/net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within a Verilog module (e.g., a testbench).

A $signal_force works the same as the force command (CR-180) with the exception that you
cannot issue a repeating force. The force will remain on the signal until a $signal_release,
a force or release command, or a subsequent $signal_force is issued. $signal_force can be
called concurrently or sequentially in a process.

Syntax
$signal_force(dest_object, value, rel_time, force_type, cancel_period,
verbose)

Returns

Nothing

Arguments

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

value string Required. Specifies the value to which the
dest_object is to be forced. The specified
value must be appropriate for the type.

rel_time integer, real, or
time

Optional. Specifies a time relative to the
current simulation time for the force to occur.
The default is 0.

force_type integer Optional. Specifies the type of force that will
be applied. The value must be one of the
following; 0 (default), 1 (deposit), 2 (drive),
or 3 (freeze). The default is "default" (which is
"freeze" for unresolved objects or "drive" for
resolved objects). See the force command
(CR-180) for further details on force type.
Sim SE User’s Manual

$signal_force UM-435
Related tasks

$init_signal_driver (UM-429), $init_signal_spy (UM-432), $signal_release (UM-436)

Limitations

• You cannot force bits or slices of a register; you can force only the entire register.

• Verilog memories (arrays of registers) are not supported.

Example
`timescale 1 ns / 1 ns

module testbench;

initial
begin
$signal_force("/testbench/uut/blk1/reset", "1", 0, 3, , 1);
$signal_force("/testbench/uut/blk1/reset", "0", 40, 3, 200000, 1);

end

...

endmodule

The above example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced
to a "0", 200000 ns after the second $signal_force call was executed.

cancel_period integer, real, time Optional. Cancels the $signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of a time unit. A value of zero
cancels the force at the end of the current time
period. Default is -1. A negative value means
that the force will not be cancelled.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced on the dest_object at the specified time.
Default is 0, no message.

Name Type Description
ModelSim SE User’s Manual

UM-436 17 - Signal Spy

Model
$signal_release

The $signal_release() system task releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers, or nets at any level of the design hierarchy from within a Verilog module (e.g., a
testbench).

A $signal_release works the same as the noforce command (CR-208). $signal_release can
be called concurrently or sequentially in a process.

Syntax
$signal_release(dest_object, verbose)

Returns

Nothing

Arguments

Related tasks

$init_signal_driver (UM-429), $init_signal_spy (UM-432), $signal_force (UM-434)

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and the time of the release. Default is
0, no message.
Sim SE User’s Manual

$signal_release UM-437
Example
module testbench;

reg release_flag;

always @(posedge release_flag) begin
$signal_release("/testbench/dut/blk1/data", 1);
$signal_release("/testbench/dut/blk1/clk", 1);

end

...

endmodule

The above example releases any forces on the signals data and clk when the register
release_flag transitions to a "1". Both calls will send a message to the transcript stating
which signal was released and when.
ModelSim SE User’s Manual

UM-438 17 - Signal Spy

Model
Sim SE User’s Manual

 UM-439
18 - Standard Delay Format (SDF) Timing Annotation

Chapter contents
Specifying SDF files for simulation UM-440

Instance specification UM-440
SDF specification with the GUI UM-441
Errors and warnings UM-441

VHDL VITAL SDF UM-442
SDF to VHDL generic matching UM-442
Resolving errors UM-443

Verilog SDF UM-444
The $sdf_annotate system task UM-444
SDF to Verilog construct matching UM-445
Optional edge specifications UM-448
Optional conditions UM-449
Rounded timing values UM-449

SDF for mixed VHDL and Verilog designs UM-450

Interconnect delays. UM-451

Disabling timing checks UM-451

Troubleshooting UM-452
Specifying the wrong instance UM-452
Mistaking a component or module name for an instance label . UM-453
Forgetting to specify the instance UM-453

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’s built-in SDF annotator.

ASIC and FPGA vendors usually provide tools that create SDF files for use with their cell
libraries. Refer to your vendor’s documentation for details on creating SDF files for your
library. Many vendors also provide instructions on using their SDF files and libraries with
ModelSim.

The SDF specification was originally created for Verilog designs, but it has also been
adopted for VHDL VITAL designs. In general, the designer does not need to be familiar
with the details of the SDF specification because the cell library provider has already
supplied tools that create SDF files that match their libraries.

Note: ModelSim will read SDF files that were compressed using gzip. Other
compression formats (e.g., Unix zip) are not supported.
ModelSim SE User’s Manual

UM-440 18 - Standard Delay Format (SDF) Timing Annotation

Model
Specifying SDF files for simulation

ModelSim supports SDF versions 1.0 through 3.0. The simulator’s built-in SDF annotator
automatically adjusts to the version of the file. Use the following vsim (CR-373) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, this instance is an ASIC or FPGA model instantiated under a testbench. For
example, to annotate maximum timing values from the SDF file myasic.sdf to an instance
u1 under a top-level named testbench, invoke the simulator as follows:

vsim -sdfmax /testbench/u1=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. This is usually
incorrect because in most cases the model is instantiated under a testbench or within a
larger system level simulation. In fact, the design can have several models, each having its
own SDF file. In this case, specify an SDF file for each instance. For example,

vsim -sdfmax /system/u1=asic1.sdf -sdfmax /system/u2=asic2.sdf system
Sim SE User’s Manual

Specifying SDF files for simulation UM-441
SDF specification with the GUI

As an alternative to the command-line options, you can specify SDF files in the Start
Simulation dialog box under the SDF tab.

You can access this dialog by invoking the simulator without any arguments or by selecting
Simulate > Start Simulation. See the GUI chapter for a description of this dialog.

For Verilog designs, you can also specify SDF files by using the $sdf_annotate system
task. See "The $sdf_annotate system task" (UM-444) for more details.

Errors and warnings

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-373) to
change SDF errors to warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowarn or +nosdfwarn options.

Another option is to use the SDF tab from the Start Simulation dialog box (shown above).
Select Disable SDF warnings (-sdfnowarn +nosdfwarn) to disable warnings, or select
Reduce SDF errors to warnings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (UM-452) for more information on errors and warnings and how to
avoid them.
ModelSim SE User’s Manual

UM-442 18 - Standard Delay Format (SDF) Timing Annotation

Model
VHDL VITAL SDF

VHDL SDF annotation works on VITAL cells only. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has already written the VITAL cells and tools that create compatible SDF
files. However, the following summary may help you understand simulator error messages.
For additional VITAL specification information, see "VITAL specification and source
code" (UM-93).

SDF to VHDL generic matching

An SDF file contains delay and timing constraint data for cell instances in the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator locates the generic and
updates it with the timing value from the SDF file. It is an error if the annotator fails to find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name

(IOPATH a y (3)) tpd_a_y

(IOPATH (posedge clk) q (1) (2)) tpd_clk_q_posedge

(INTERCONNECT u1/y u2/a (5)) tipd_a

(SETUP d (posedge clk) (5)) tsetup_d_clk_noedge_posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d_clk_negedge_posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1’b0) clk) (5)) tpw_clk_reset_eq_0
Sim SE User’s Manual

VHDL VITAL SDF UM-443
Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

** Error (vsim-SDF-3240) myasic.sdf(18):
Instance ’/testbench/dut/u1’ does not have a generic named ’tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If it is,
then there is probably a mismatch between the SDF and the VITAL cells. You need to find
the cell instance and compare its generic names to those expected by the annotator. Look
in the VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’t match the names expected by the annotator, then there are several
possibilities:

• The vendor’s tools are not conforming to the VITAL specification.

• The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

• The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-373) with
the -vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/u1=myasic.sdf testbench

For more information on resolving errors see "Troubleshooting" (UM-452).
ModelSim SE User’s Manual

UM-444 18 - Standard Delay Format (SDF) Timing Annotation

Model
Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the time it is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task

The syntax for $sdf_annotate is:

Syntax

$sdf_annotate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"],
["<mtm_spec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdffile>"

String that specifies the SDF file. Required.

<instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"

String that specifies the configuration file. Optional. Currently not supported, this
argument is ignored.

"<log_file>"

String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum",
"typical", "maximum", and "tool_control". Case is ignored and the default is
"tool_control". The "tool_control" argument means to use the delay specified on the
command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scale_factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier is a real number that is used to
scale the corresponding delay in the SDF file.

"<scale_type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec>
delay selection is always used to select the delay scaling factor, but if a <scale_type> is
specified, then it will determine the min/typ/max selection from the SDF file. The
allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",
"from_max", "from_maximum", and "from_mtm". Case is ignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.
Sim SE User’s Manual

Verilog SDF UM-445
Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance to
which it applies:

$sdf_annotate("myasic.sdf", testbench.u1);

To also specify maximum delay values:

$sdf_annotate("myasic.sdf", testbench.u1, , , "maximum");

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

The IOPATH construct usually annotates path delays. If ModelSim can’t locate a
corresponding specify path delay, it returns an error unless you use the
+sdf_iopath_to_prim_ok argument to vsim (CR-373). If you specify that argument and the
module contains no path delays, then all primitives that drive the specified output port are
annotated.

INTERCONNECT and PORT are matched to input ports:

Both of these constructs identify a module input or inout port and create an internal net that
is a delayed version of the port. This is called a Module Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

SDF Verilog

(IOPATH (posedge clk) q (3) (4)) (posedge clk => q) = 0;

(IOPATH a y (3) (4)) buf u1 (y, a);

SDF Verilog

(INTERCONNECT u1.y u2.a (5)) input a;

(PORT u2.a (5)) inout a;

SDF Verilog

(PATHPULSE a y (5) (10)) (a => y) = 0;

(GLOBALPATHPULSE a y (30) (60)) (a => y) = 0;
ModelSim SE User’s Manual

UM-446 18 - Standard Delay Format (SDF) Timing Annotation

Model
If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

DEVICE is matched to primitives or specify path delays:

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated. If
it is a module instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitives that drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

HOLD is matched to $hold and $setuphold:

SETUPHOLD is matched to $setup, $hold, and $setuphold:

RECOVERY is matched to $recovery:

SDF Verilog

(DEVICE y (5)) and u1(y, a, b);

(DEVICE y (5)) (a => y) = 0; (b => y) = 0;

SDF Verilog

(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);

(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);

(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);
Sim SE User’s Manual

Verilog SDF UM-447
REMOVAL is matched to $removal:

RECREM is matched to $recovery, $removal, and $recrem:

SKEW is matched to $skew:

WIDTH is matched to $width:

PERIOD is matched to $period:

NOCHANGE is matched to $nochange:

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal(negedge reset, posedge clk, 0);

SDF Verilog

(RECREM (negedge reset) (posedge clk) (5) (5)) $recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $removal(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $recrem(negedge reset, posedge clk, 0);

SDF Verilog

(SKEW (posedge clk1) (posedge clk2) (5)) $skew(posedge clk1, posedge clk2, 0);

SDF Verilog

(WIDTH (posedge clk) (5)) $width(posedge clk, 0);

SDF Verilog

(PERIOD (posedge clk) (5)) $period(posedge clk, 0);

SDF Verilog

(NOCHANGE (negedge write) addr (5) (5)) $nochange(negedge write, addr, 0, 0);
ModelSim SE User’s Manual

UM-448 18 - Standard Delay Format (SDF) Timing Annotation

Model
Optional edge specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

• A match occurs if the SDF port does not have an edge.

• A match occurs if the specify port does not have an edge.

• A match occurs if the SDF port edge is identical to the specify port edge.

• A match occurs if explicit edge transitions in the specify port edge overlap with the SDF
port edge.

These rules allow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for a falling
and rising edge on data with respect to clock, while the SDF file may contain only a single
setup check for both edges:

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value.

Likewise, the SDF file may contain more accurate data than the model can accommodate.

In this case, both SDF constructs are matched and the timing check receives the value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF file is limited to posedge and negedge. For example,

The explicit edge specifiers are 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is
equivalent to posedge, while the set of [10, 1x, x0] is equivalent to negedge. A match occurs
if any of the explicit edges in the specify port match any of the explicit edges implied by
the SDF port.

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);
Sim SE User’s Manual

Verilog SDF UM-449
Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

• A match occurs if the SDF does not have a condition.

• A match occurs for a timing check if the SDF port condition is semantically equivalent
to the specify port condition.

• A match occurs for a path delay if the SDF condition is lexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of values in the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the module that
is annotated. For example, if the SDF TIMESCALE is 1ns and a value of .016 is annotated
to a path delay in a module having a time precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16ps is rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the
annotated MIPD.

SDF Verilog

(SETUP data (COND (reset!=1) (posedge clock)) (5)) $setup(data, posedge clk &&& (reset==0), 0);

SDF Verilog

(COND (r1 || r2) (IOPATH clk q (5))) if (r1 || r2) (clk => q) = 5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) if (r2 || r1) (clk => q) = 5; // does not match
ModelSim SE User’s Manual

UM-450 18 - Standard Delay Format (SDF) Timing Annotation

Model
SDF for mixed VHDL and Verilog designs

Annotation of a mixed VHDL and Verilog design is very flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. This flexibility is available only by
using the simulator’s SDF command-line options. The Verilog $sdf_annotate system task
can annotate Verilog cells only. See the vsim command (CR-373) for more information on
SDF command-line options.
Sim SE User’s Manual

Interconnect delays UM-451
Interconnect delays

An interconnect delay represents the delay from the output of one device to the input of
another. ModelSim can model single interconnect delays or multisource interconnect
delays for Verilog, VHDL/VITAL, or mixed designs. See the vsim command for more
information on the relevant command-line arguments.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the simulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.

Disabling timing checks

ModelSim offers a number of options for disabling timing checks on a "global" or
individual basis. The table below provides a summary of those options. See the command
and argument descriptions in the ModelSim Command Reference for more details.

Command and argument Effect

tcheck_set (CR-275) modifies reporting or X generation status on one or more timing
checks

tcheck_status (CR-277) prints to the Transcript the current status of one or more timing checks

vlog +notimingchecks disables timing check system tasks for all instances in the specified
Verilog design

vlog +nospecify disables specify path delays and timing checks for all instances in the
specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to zero for all
instances in the specified design

vsim +no_notifier disables the toggling of the notifier register argument of the timing
check system tasks for all instances in the specified design

vsim +no_tchk_msg disables error messages issued by timing check system tasks when
timing check violations occur for all instances in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checks for all instances in the
specified design

vsim +nospecify disables specify path delays and timing checks for all instances in the
specified design
ModelSim SE User’s Manual

UM-452 18 - Standard Delay Format (SDF) Timing Annotation

Model
Troubleshooting

Specifying the wrong instance

By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common case is to leave off the instance altogether,
which is the same as selecting the top-level design unit. This is generally wrong because
the instance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under a top-level testbench. See "Instance specification" (UM-440) for an
example.

A common example for both VHDL and Verilog testbenches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end;

architecture only of testbench is
component myasic
end component;

begin
dut : myasic;

end;

Verilog testbench

module testbench;
myasic dut();

endmodule

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, view the structure pane, navigate to the model instance,
select it, and enter the environment command (CR-161). This command displays the
instance name that should be used in the SDF command-line option.
Sim SE User’s Manual

Troubleshooting UM-453
Mistaking a component or module name for an instance label

Another common error is to specify the component or module name rather than the instance
label. For example, the following invocation is wrong for the above testbenches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

This results in the following error message:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/myasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Results in:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u1’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u2’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u3’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u4’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u5’

** Warning (vsim-SDF-3432) myasic.sdf:
This file is probably applied to the wrong instance.

** Warning (vsim-SDF-3432) myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

** Warning (vsim-SDF-3440) myasic.sdf:
Failed to find any of the 358 instances from this file.

** Warning (vsim-SDF-3442) myasic.sdf:
Try instance ’/testbench/dut’. It contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors" (UM-443) for specific VHDL VITAL SDF troubleshooting.
ModelSim SE User’s Manual

UM-454 18 - Standard Delay Format (SDF) Timing Annotation

Model
Sim SE User’s Manual

 UM-455
19 - Value Change Dump (VCD) Files

Chapter contents
Creating a VCD file UM-456

Flow for four-state VCD file UM-456
Flow for extended VCD file UM-456
Case sensitivity UM-456
Checkpoint/restore and writing VCD files UM-457

Using extended VCD as stimulus UM-458
Simulating with input values from a VCD file UM-458
Replacing instances with output values from a VCD file . . . UM-459

ModelSim VCD commands and VCD tasks UM-461
Compressing files with VCD tasks UM-462

A VCD file from source to output UM-463
VHDL source code UM-463
VCD simulator commands UM-463
VCD output UM-464

Capturing port driver data UM-467
Supported TSSI states UM-467
Strength values UM-468
Port identifier code UM-468
Example VCD output from vcd dumpports UM-469

This chapter describes how to use VCD files in ModelSim. The VCD file format is
specified in the IEEE 1364 standard. It is an ASCII file containing header information,
variable definitions, and variable value changes. VCD is in common use for Verilog
designs, and is controlled by VCD system task calls in the Verilog source code. ModelSim
provides command equivalents for these system tasks and extends VCD support to VHDL
designs. The ModelSim commands can be used on VHDL, Verilog, or mixed designs.

If you need vendor-specific ASIC design-flow documentation that incorporates VCD,
please contact your ASIC vendor.
ModelSim SE User’s Manual

UM-456 19 - Value Change Dump (VCD) Files

Model
Creating a VCD file

There are two flows in ModelSim for creating a VCD file. One flow produces a four-state
VCD file with variable changes in 0, 1, x, and z with no strength information; the other
produces an extended VCD file with variable changes in all states and strength information
and port driver data.

Both flows will also capture port driver changes unless filtered out with optional
command-line arguments.

Flow for four-state VCD file

First, compile and load the design:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name with the vcd file command (CR-

302) and add objects to the file with the vcd add command (CR-292):

VSIM 1> vcd file myvcdfile.vcd
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be a VCD file in the working directory.

Flow for extended VCD file

First, compile and load the design:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name and objects to add with the vcd
dumpports command (CR-295):

VSIM 1> vcd dumpports -file myvcdfile.vcd /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be an extended VCD file in the working directory.

Case sensitivity

VHDL is not case sensitive so ModelSim converts all signal names to lower case when it
produces a VCD file. Conversely, Verilog designs are case sensitive so ModelSim
maintains case when it produces a VCD file.
Sim SE User’s Manual

Creating a VCD file UM-457
Checkpoint/restore and writing VCD files

If a checkpoint occurs while ModelSim is writing a VCD file, the entire VCD file is copied
into the checkpoint file. Since VCD files can be very large, it is possible that disk space
problems may occur. Consequently, ModelSim issues a warning in this situation.
ModelSim SE User’s Manual

UM-458 19 - Value Change Dump (VCD) Files

Model
Using extended VCD as stimulus

You can use an extended VCD file as stimulus to re-simulate your design. There are two
ways to do this: 1) simulate the top level of a design unit with the input values from an
extended VCD file; and 2) specify one or more instances in a design to be replaced with the
output values from the associated VCD file.

Simulating with input values from a VCD file

When simulating with inputs from an extended VCD file, you can simulate only one design
unit at a time. In other words, you can apply the VCD file inputs only to the top level of the
design unit for which you captured port data.

The general procedure includes two steps:

1 Create a VCD file for a single design unit using the vcd dumpports command (CR-295).

2 Resimulate the single design unit using the -vcdstim argument to vsim (CR-373). Note
that -vcdstim works only with VCD files that were created by a ModelSim simulation.

Example 1 — Verilog counter

First, create the VCD file for the single instance using vcd dumpports:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter
VSIM 1> vcd dumpports -file counter.vcd /test_counter/dut/*
VSIM 2> run
VSIM 3> quit -f

Next, rerun the counter without the testbench, using the -vcdstim argument:

% vsim -vcdstim counter.vcd counter
VSIM 1> add wave /*
VSIM 2> run 200

Example 2 — VHDL adder

First, create the VCD file using vcd dumpports:

% cd ~/modeltech/examples
% vlib work
% vcom gates.vhd adder.vhd stimulus.vhd
% vsim testbench2
VSIM 1> vcd dumpports -file addern.vcd /testbench2/uut/*
VSIM 2> run 1000
VSIM 3> quit -f

Next, rerun the adder without the testbench, using the -vcdstim argument:

% vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"
Sim SE User’s Manual

Using extended VCD as stimulus UM-459
Example 3 — Mixed-HDL design

First, create three VCD files, one for each module:

% cd ~/modeltech/examples/mixedHDL
% vlib work
% vlog cache.v memory.v proc.v
% vcom util.vhd set.vhd top.vhd
% vsim top
VSIM 1> vcd dumpports -file proc.vcd /top/p/*
VSIM 2> vcd dumpports -file cache.vcd /top/c/*
VSIM 3> vcd dumpports -file memory.vcd /top/m/*
VSIM 4> run 1000
VSIM 5> quit -f

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.vcd proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.vcd cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.vcd memory -do "add wave /*; run 1000"
VSIM 1> quit -f

Replacing instances with output values from a VCD file

Replacing instances with output values from a VCD file lets you simulate without the
instance’s source or even the compiled object. The general procedure includes two steps:

1 Create VCD files for one or more instances in your design using the vcd dumpports
command (CR-295). If necessary, use the -vcdstim switch to handle port order problems
(see below).

2 Re-simulate your design using the -vcdstim <instance>=<filename> argument to vsim
(CR-373). Note that this works only with VCD files that were created by a ModelSim
simulation.

Example

In the following example, the three instances /top/p, /top/c, and /top/m are replaced in
simulation by the output values found in the corresponding VCD files.

First, create VCD files for all instances you want to replace:

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
vcd dumpports -vcdstim -file memory.vcd /top/m/*
run 1000

Next, simulate your design and map the instances to the VCD files you created:

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd
-vcdstim /top/m=memory.vcd
ModelSim SE User’s Manual

UM-460 19 - Value Change Dump (VCD) Files

Model
Port order issues

The -vcdstim argument to the vcd dumpports command ensures the order that port names
appear in the VCD file matches the order that they are declared in the instance’s module or
entity declaration. Consider the following module declaration:

module proc(clk, addr, data, rw, strb, rdy);
input clk, rdy;
output addr, rw, strb;
inout data;

The order of the ports in the module line (clk, addr, data, ...) does not match the order
of those ports in the input, output, and inout lines (clk, rdy, addr, ...). In this case the
-vcdstim argument to the vcd dumpports command needs to be used.

In cases where the order is the same, you do not need to use the -vcdstim argument to vcd
dumpports. Also, module declarations of the form:

module proc(input clk, output addr, inout data, ...)

do not require use of the argument.
Sim SE User’s Manual

ModelSim VCD commands and VCD tasks UM-461
ModelSim VCD commands and VCD tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD
commands to their associated tasks.

ModelSim versions 5.5 and later also support extended VCD (dumpports system tasks).
The table below maps the VCD dumpports commands to their associated tasks.

ModelSim supports multiple VCD files. This functionality is an extension of the IEEE Std
1364 specification. The tasks behave the same as the IEEE equivalent tasks such as
$dumpfile, $dumpvar, etc. The difference is that $fdumpfile can be called multiple times
to create more than one VCD file, and the remaining tasks require a filename argument to
associate their actions with a specific file.

VCD commands VCD system tasks

vcd add (CR-292) $dumpvars

vcd checkpoint (CR-293) $dumpall

vcd file (CR-302) $dumpfile

vcd flush (CR-306) $dumpflush

vcd limit (CR-307) $dumplimit

vcd off (CR-308) $dumpoff

vcd on (CR-309) $dumpon

VCD dumpports commands VCD system tasks

vcd dumpports (CR-295) $dumpports

vcd dumpportsall (CR-297) $dumpportsall

vcd dumpportsflush (CR-298) $dumpportsflush

vcd dumpportslimit (CR-299) $dumpportslimit

vcd dumpportsoff (CR-300) $dumpportsoff

vcd dumpportson (CR-301) $dumpportson

VCD commands VCD system tasks

vcd add (CR-292) -file <filename> $fdumpvars

vcd checkpoint (CR-293) <filename> $fdumpall

vcd files (CR-304) <filename> $fdumpfile

vcd flush (CR-306) <filename> $fdumpflush
ModelSim SE User’s Manual

UM-462 19 - Value Change Dump (VCD) Files

Model
Compressing files with VCD tasks

ModelSim can produce compressed VCD files using the gzip compression algorithm.
Since we cannot change the syntax of the system tasks, we act on the extension of the output
file name. If you specify a .gz extension on the filename, ModelSim will compress the
output.

vcd limit (CR-307) <filename> $fdumplimit

vcd off (CR-308) <filename> $fdumpoff

vcd on (CR-309) <filename> $fdumpon

Important: Note that two commands (vcd file and vcd files) are available to specify a
filename and state mapping for a VCD file. Vcd file allows for only one VCD file and
exists for backwards compatibility with ModelSim versions prior to 5.5. Vcd files allows
for creation of multiple VCD files and is the preferred command to use in ModelSim
versions 5.5 and later.

VCD commands VCD system tasks
Sim SE User’s Manual

A VCD file from source to output UM-463
A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL source code

The design is a simple shifter device represented by the following VHDL source code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD is
port (CLK, RESET, data_in : IN STD_LOGIC;

Q : INOUT STD_LOGIC_VECTOR(8 downto 0));
END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD is
begin

process (CLK,RESET)
begin

if (RESET = '1') then
Q <= (others => '0') ;

elsif (CLK'event and CLK = '1') then
Q <= Q(Q'left - 1 downto 0) & data_in ;

end if ;
end process ;

end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands:

vcd file output.vcd
vcd add -r *
force reset 1 0
force data_in 0 0
force clk 0 0
run 100
force clk 1 0, 0 50 -repeat 100
run 100
vcd off
force reset 0 0
force data_in 1 0
run 100
vcd on
run 850
force reset 1 0
run 50
vcd checkpoint
quit -sim
ModelSim SE User’s Manual

UM-464 19 - Value Change Dump (VCD) Files

Model
VCD output

The VCD file created as a result of the preceding scenario would be called output.vcd. The
following pages show how it would look.

VCD output

$date
Thu Sep 18 11:07:43 2003

$end
$version

ModelSim Version 5.8
$end
$timescale

1ns
$end
$scope module shifter_mod $end
$var wire 1 ! clk $end
$var wire 1 " reset $end
$var wire 1 # data_in $end
$var wire 1 $ q [8] $end
$var wire 1 % q [7] $end
$var wire 1 & q [6] $end
$var wire 1 ' q [5] $end
$var wire 1 (q [4] $end
$var wire 1) q [3] $end
$var wire 1 * q [2] $end
$var wire 1 + q [1] $end
$var wire 1 , q [0] $end
$upscope $end
$enddefinitions $end
#0
$dumpvars
0!
1"
0#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end
#100
1!
#150
0!
#200
1!
$dumpoff
x!
x"
x#
x$
x%
x&
x'
x(
Sim SE User’s Manual

A VCD file from source to output UM-465
x)
x*
x+
x,
$end
#300
$dumpon
1!
0"
1#
0$
0%
0&
0'
0(
0)
0*
0+
1,
$end
#350
0!
#400
1!
1+
#450
0!
#500
1!
1*
#550
0!
#600
1!
1)
#650
0!
#700
1!
1(
#750
0!
#800
1!
1'
#850
0!
#900
1!
1&
#950
0!
#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
ModelSim SE User’s Manual

UM-466 19 - Value Change Dump (VCD) Files

Model
0!
1"
0,
0+
0*
0)
0(
0'
0&
0%
0$
#1200
1!
$dumpall
1!
1"
1#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end
Sim SE User’s Manual

Capturing port driver data UM-467
Capturing port driver data

Some ASIC vendors’ toolkits read a VCD file format that provides details on port drivers.
This information can be used, for example, to drive a tester. See the ASIC vendor’s
documentation for toolkit specific information.

In ModelSim use the vcd dumpports command (CR-295) to create a VCD file that captures
port driver data.

Port driver direction information is captured as TSSI states in the VCD file. Each time an
external or internal port driver changes values, a new value change is recorded in the VCD
file with the following format:

 p<TSSI state> <0 strength> <1 strength> <identifier_code>

Supported TSSI states

The supported <TSSI states> are:

Input (testfixture) Output (dut)

D low L low

U high H high

N unknown X unknown

Z tri-state T tri-state

d low (two or more
drivers active)

l low (two or more
drivers active)

u high (two or more
drivers active)

h high (two or more
drivers active)

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving unknown)

F three-state (input and output unconnected)

A unknown (input driving low and output driving high)

a unknown (input driving low and output driving unknown)

B unknown (input driving high and output driving low)

b unknown (input driving high and output driving unknown)

C unknown (input driving unknown and output driving low)

c unknown (input driving unknown and output driving high)
ModelSim SE User’s Manual

UM-468 19 - Value Change Dump (VCD) Files

Model
Strength values

The <strength> values are based on Verilog strengths:

Port identifier code

The <identifier_code> is an integer preceded by < that starts at zero and is incremented for
each port in the order the ports are specified. Also, the variable type recorded in the VCD
header is "port".

f unknown (input and output three-stated)

Unknown direction

Strength VHDL std_logic mappings

0 highz ’Z’

1 small

2 medium

3 weak

4 large

5 pull ’W’,’H’,’L’

6 strong ’U’,’X’,’0’,’1’,’-’

 7 supply
Sim SE User’s Manual

Capturing port driver data UM-469
Example VCD output from vcd dumpports

The following is an example VCD file created with the vcd dumpports command.

$comment
File created using the following command:

vcd file myvcdfile.vcd -dumpports
$end
$date

Thu Sep 18 07:35:58 2003
$end
$version

dumpports ModelSim Version 5.8
$end
$timescale

1ns
$end
$scope module test_counter $end
$scope module dut $end
$var port 1 <0 count [7] $end
$var port 1 <1 count [6] $end
$var port 1 <2 count [5] $end
$var port 1 <3 count [4] $end
$var port 1 <4 count [3] $end
$var port 1 <5 count [2] $end
$var port 1 <6 count [1] $end
$var port 1 <7 count [0] $end
$var port 1 <8 clk $end
$var port 1 <9 reset $end
$upscope $end
$upscope $end
$enddefinitions $end
#0
$dumpports
pX 6 6 <7
pX 6 6 <6
pX 6 6 <5
pX 6 6 <4
pX 6 6 <3
pX 6 6 <2
pX 6 6 <1
pX 6 6 <0
pD 6 0 <9
pD 6 0 <8
$end
#5
pU 0 6 <9
#8
pL 6 0 <7
pL 6 0 <6
pL 6 0 <5
pL 6 0 <4
pL 6 0 <3
pL 6 0 <2
pL 6 0 <1
pL 6 0 <0
#9
pD 6 0 <9
#10
pU 0 6 <8
#12
ModelSim SE User’s Manual

UM-470 19 - Value Change Dump (VCD) Files

Model
pH 0 6 <7
#20
pD 6 0 <8
#30
pU 0 6 <8
#32
pL 6 0 <7
pH 0 6 <6
#40
pD 6 0 <8
#50
pU 0 6 <8
#52
pH 0 6 <7
#60
pD 6 0 <8
#70
pU 0 6 <8
#72
pL 6 0 <7
pL 6 0 <6
pH 0 6 <5
#80
pD 6 0 <8
#90
pU 0 6 <8
#92
pH 0 6 <7
#100
pD 6 0 <8
$vcdclose
#100
$end
Sim SE User’s Manual

 UM-471
20 - Tcl and macros (DO files)

Chapter contents
Introduction UM-472

Tcl features within ModelSim. UM-472
Tcl References. UM-472

Tcl commands UM-473

Tcl command syntax UM-474
if command syntax UM-476
set command syntax UM-477
Command substitution UM-478
Command separator UM-478
Multiple-line commands UM-478
Evaluation order UM-478
Tcl relational expression evaluation UM-478
Variable substitution UM-479
System commands. UM-479

List processing UM-480

ModelSim Tcl commands UM-480

ModelSim Tcl time commands UM-481

Tcl examples UM-483

Macros (DO files) UM-487
Creating DO files UM-487
Using Parameters with DO files UM-487
Deleting a file from a .do script UM-487
Making macro parameters optional UM-488
Useful commands for handling breakpoints and errors . . . UM-490
Error action in DO files UM-490

Macro helper UM-492

The Tcl Debugger UM-493
Starting the debugger UM-493
How it works UM-493
The Chooser UM-493
The Debugger UM-494
Breakpoints UM-495
Configuration UM-495

TclPro Debugger UM-493
ModelSim SE User’s Manual

UM-472 20 - Tcl and macros (DO files)

Model
Introduction

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim. Macros in ModelSim are simply Tcl scripts that contain ModelSim and,
optionally, Tcl commands.

Tcl is a scripting language for controlling and extending ModelSim. Within ModelSim you
can develop implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, development is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart ModelSim. In addition, if ModelSim does not
provide the command you need, you can use Tcl to create your own commands.

Tcl features within ModelSim

Using Tcl with ModelSim gives you these features:

• command history (like that in C shells)

• full expression evaluation and support for all C-language operators

• a full range of math and trig functions

• support of lists and arrays

• regular expression pattern matching

• procedures

• the ability to define your own commands

• command substitution (that is, commands may be nested)

• robust scripting language for macros

Tcl References

Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by
Addison-Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by
Brent Welch published by Prentice Hall. You can also consult the following online
references:

• Select Help > Tcl Man Pages.

• The Model Technology web site lists a variety of Tcl resources:
www.model.com/resources/tcltk.asp
Sim SE User’s Manual

http://www.model.com/resources/tcltk.asp

Tcl commands UM-473
Tcl commands

For complete information on Tcl commands, select Help > Tcl Man Pages. Also see
"Preference variables located in Tcl files" (UM-540) for information on Tcl variables.

ModelSim command names that conflict with Tcl commands have been renamed or have
been replaced by Tcl commands. See the list below:

Previous ModelSim
command

Command changed to (or replaced by)

continue run (CR-252) with the -continue option

format list | wave write format (CR-422) with either list or wave specified

if replaced by the Tcl if command, see "if command syntax" (UM-

476) for more information

list add list (CR-48)

nolist | nowave delete (CR-146) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(UM-477) for more information

source vsource (CR-393)

wave add wave (CR-52)
ModelSim SE User’s Manual

UM-474 20 - Tcl and macros (DO files)

Model
Tcl command syntax

The following eleven rules define the syntax and semantics of the Tcl language. Additional
details on if command syntax (UM-476) and set command syntax (UM-477) follow.

1 A Tcl script is a string containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

2 A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command procedure
to carry out the command, then all of the words of the command are passed to the
command procedure. The command procedure is free to interpret each of its words in
any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

3 Words of a command are separated by white space (except for newlines, which are
command separators).

4 If the first character of a word is a double-quote (""") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

5 If the first character of a word is an open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6 If a word contains an open bracket ("[") then Tcl performs command substitution. To do
this it invokes the Tcl interpreter recursively to process the characters following the open
bracket as a Tcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.
Sim SE User’s Manual

Tcl command syntax UM-475
7 If a word contains a dollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable.
Variable substitution may take any of the following forms:

$name

Name is the name of a scalar variable; the name is terminated by any character that isn't
a letter, digit, or underscore.

$name(index)

Name gives the name of an array variable and index gives the name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${name}

Name is the name of a scalar variable. It may contain any characters whatsoever except
for close braces.

There may be any number of variable substitutions in a single word. Variable substitution
is not performed on words enclosed in braces.

8 If a backslash ("\") appears within a word then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is treated
as an ordinary character and included in the word. This allows characters such as double
quotes, close brackets, and dollar signs to be included in words without triggering special
processing. The following table lists the backslash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible alert (bell) (0x7).

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\<newline>whiteSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequence is
unique in that it is replaced in a separate pre-pass before the
command is actually parsed. This means that it will be replaced
even when it occurs between braces, and the resulting space will
be treated as a word separator if it isn't in braces or quotes.

\\ Backslash ("\").

\ooo The digits ooo (one, two, or three of them) give the octal value
of the character.
ModelSim SE User’s Manual

UM-476 20 - Tcl and macros (DO files)

Model
Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

9 If a hash character ("#") appears at a point where Tcl is expecting the first character of
the first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

11 Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable's value contains spaces.

if command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else is true, or a string value such
as true or yes for true and false or no for false); if it is true then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is
true then body2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words" to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted as long as else is omitted too. The return value from the command is
the result of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

\xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.
Sim SE User’s Manual

Tcl command syntax UM-477
set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varName ?value?

Description

Returns the value of variable varName. If value is specified, then sets the value of varName
to value, creating a new variable if one doesn't already exist, and returns its value. If
varName contains an open parenthesis and ends with a close parenthesis, then it refers to
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refers to a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refers to an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variable if
the current namespace is the global namespace). If a procedure is active, then varName
refers to a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unless a Tcl variable command was invoked
to declare varName to be a namespace variable.

Command substitution

Placing a command in square brackets [] will cause that command to be evaluated first and
its results returned in place of the command. An example is:

set a 25
set b 11
set c 3
echo "the result is [expr ($a + $b)/$c]"

will output:

"the result is 12"

This feature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you
now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification is optional.
ModelSim SE User’s Manual

UM-478 20 - Tcl and macros (DO files)

Model
Command separator

A semicolon character (;) works as a separator for multiple commands on the same line. It
is not required at the end of a line in a command sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (as in a C shell) until the multiple-line command is
complete.

In the example below, note the way the opening brace ’{’ is at the end of the if and else
lines. This is important because otherwise the Tcl scanner won't know that there is more
coming in the command and will try to execute what it has up to that point, which won't be
what you intend.

if { [exa sig_a] == "0011ZZ"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do

}

Evaluation order

An important thing to remember when using Tcl is that anything put in curly brackets {} is
not evaluated immediately. This is important for if-then-else statements, procedures, loops,
and so forth.

Tcl relational expression evaluation

When you are comparing values, the following hints may be useful:

• Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want a literal to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...

The following will also work:

if {[exa var_1] == "345"}...

• However, if a literal cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

if {[exa var_2] == "001Z"}...

will work okay.

• Don't quote single characters in single quotes:

if {[exa var_3] == 'X'}...

will give an error

if {[exa var_3] == "X"}...

will work okay.
Sim SE User’s Manual

Tcl command syntax UM-479
• For the equal operator, you must use the C operator "==". For not-equal, you must use
the C operator "!=".

Variable substitution

When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by ModelSim or by you, and substitute the value of the variable.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh

See "Simulator state variables" (UM-542) for more information about ModelSim-defined
variables.

System commands

To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

Note: Tcl is case sensitive for variable names.
ModelSim SE User’s Manual

UM-480 20 - Tcl and macros (DO files)

Model
List processing

In Tcl a "list" is a set of strings in curly braces separated by spaces. Several Tcl commands
are available for creating lists, indexing into lists, appending to lists, getting the length of
lists and shifting lists. These commands are:

Two other commands, lsearch and lsort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

See also the ModelSim Tcl command: lecho (CR-188)

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and ModelSim. Only brief
descriptions are provided here; for more information and command syntax see the
ModelSim Command Reference.

Command syntax Description

lappend var_name val1 val2 ... appends val1, val2, etc. to list var_name

lindex list_name index returns the index-th element of list_name; the first element is 0

linsert list_name index val1 val2 ... inserts val1, val2, etc. just before the index-th element of list_name

list val1, val2 ... returns a Tcl list consisting of val1, val2, etc.

llength list_name returns the number of elements in list_name

lrange list_name first last returns a sublist of list_name, from index first to index last; first or
last may be "end", which refers to the last element in the list

lreplace list_name first last val1, val2, ... replaces elements first through last with val1, val2, etc.

Command Description

alias (CR-62) creates a new Tcl procedure that evaluates the specified commands;
used to create a user-defined alias

find (CR-176) locates incrTcl classes and objects

lecho (CR-188) takes one or more Tcl lists as arguments and pretty-prints them to the
Transcript pane

lshift (CR-193) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-194) returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

printenv (CR-224) echoes to the Transcript pane the current names and values of all
environment variables
Sim SE User’s Manual

ModelSim Tcl time commands UM-481
ModelSim Tcl time commands

ModelSim Tcl time commands make simulator-time-based values available for use within
other Tcl procedures.

Time values may optionally contain a units specifier where the intervening space is also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are always in the current
Time Scale Units. All time values are converted to a 64-bit integer value in the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

Conversions

Relations

All relation operations return 1 or 0 for true or false respectively and are suitable return
values for TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {
...

}

Command Description

 intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Time in
ModelSim is a 64-bit integer)

 RealToTime <real> converts a <real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by the
<scaleFactor> integer

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than

gteTime <time> <time> evaluates for greater than or equal

ltTime <time> <time> evaluates for less than

lteTime <time> <time> evaluates for less than or equal
ModelSim SE User’s Manual

UM-482 20 - Tcl and macros (DO files)

Model
Arithmetic

Command Description

addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide

mulTime <time> <time> 64-bit integer multiply

subTime <time> <time> subtract time
Sim SE User’s Manual

Tcl examples UM-483
Tcl examples

This is an example of using the Tcl while loop to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
set i [expr {[llength $a] - 1}]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
for {set i [expr {[llength $a] - 1}]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

This example uses the Tcl foreach command to copy a list from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all of
the elements of a list):

set b [list]
foreach i $a { set b [linsert $b 0 $i] }

This example shows a list reversal as above, this time aborting on a particular element using
the Tcl break command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} break
set b [linsert $b 0 $i]

}

This example is a list reversal that skips a particular element by using the Tcl continue
command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

}

The next example works in UNIX only. In a Windows environment, the Tcl exec command
will execute compiled files only, not system commands.) The example shows how you can
access system information and transfer it into VHDL variables or signals and Verilog nets
or registers. When a particular HDL source breakpoint occurs, a Tcl function is called that
gets the date and time and deposits it into a VHDL signal of type STRING. If a particular
environment variable (DO_ECHO) is set, the function also echoes the new date and time
to the transcript file by examining the VHDL variable.

(in VHDL source):

signal datime : string(1 to 28) := " ";# 28 spaces
ModelSim SE User’s Manual

UM-484 20 - Tcl and macros (DO files)

Model
(on VSIM command line or in macro):

proc set_date {} {
global env
set do_the_echo [set env(DO_ECHO)]
set s [clock format [clock seconds]]
force -deposit datime $s
if {do_the_echo} {

echo "New time is [examine -value datime]"
}

}

bp src/waveadd.vhd 133 {set_date; continue}
 --sets the breakpoint to call set_date

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in a previous simulation, including signals listed, geometry, and screen position.
It also adds buttons to the Main window toolbar to ease management of the wave files.

This file contains procedures to manage multiple wave files.
Source this file from the command line or as a startup script.
source <path>/wave_mgr.tcl

add_wave_buttons
Add wave management buttons to the main toolbar (new, save and load)

new_wave
Dialog box creates a new wave window with the user provided name

named_wave <name>
Creates a new wave window with the specified title

save_wave <file-root>
Saves name, window location and contents for all open windows

wave windows
Creates <file-root><n>.do file for each window where <n> is 1
to the number of windows. Default file-root is "wave". Also
creates windowSet.do file that contains title and geometry info.

load_wave <file-root>
Opens and loads wave windows for all files matching <file-root><n>.do
where <n> are the numbers from 1-9. Default <file-root> is "wave".
Also runs windowSet.do file if it exists.

Add wave management buttons to the main toolbar

proc add_wave_buttons {} {
_add_menu main controls right SystemMenu SystemWindowFrame {Load Waves} \
load_wave
_add_menu main controls right SystemMenu SystemWindowFrame {Save Waves} \
save_wave
_add_menu main controls right SystemMenu SystemWindowFrame {New Wave} \
new_wave
}
Simple Dialog requests name of new wave window. Defaults to Wave<n>

proc new_wave {} {
global vsimPriv
set defaultName "Wave[llength $vsimPriv(WaveWindows)]"
set windowName [GetValue . "Create Named Wave Window:" $defaultName]
Sim SE User’s Manual

Tcl examples UM-485
if {$windowName == ""} {
Dialog canceled
abort operation
return

}
Debug
puts "Window name: $windowName\n"
if {$windowName == "{}"} {

set windowName ""
}
if {$windowName != ""} {

named_wave $windowName
} else {

named_wave $defaultName
}

}

Creates a new wave window with the provided name (defaults to "Wave")

proc named_wave {{name "Wave"}} {
set newWave [view -new wave]
if {[string length $name] > 0} {

wm title $newWave $name
}

}

Writes out format of all wave windows, stores geometry and title info in
windowSet.do file. Removes any extra files with the same fileroot.
Default file name is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {
global vsimPriv
set n 1
if {[catch {open windowSet_$fileroot.do w 755} fileId]} {

error "Open failure for $fileroot ($fileId)"
}
foreach w $vsimPriv(WaveWindows) {

echo "Saving: [wm title $w]"
set filename $fileroot$n.do
if {[file exists $filename]} {

Use different file
set n2 0
while {[file exists ${fileroot}${n}${n2}.do]} {

incr n2
}
set filename ${fileroot}${n}${n2}.do

}
write format wave -window $w $filename
puts $fileId "wm title $w \"[wm title $w]\""
puts $fileId "wm geometry $w [wm geometry $w]"
puts $fileId "mtiGrid_colconfig $w.grid name -width \

[mtiGrid_colcget $w.grid name -width]"
puts $fileId "mtiGrid_colconfig $w.grid value -width \

[mtiGrid_colcget $w.grid value -width]"
flush $fileId
incr n

}

foreach f [lsort [glob -nocomplain $fileroot\[$n-9\].do]] {
echo "Removing: $f"
exec rm $f
ModelSim SE User’s Manual

UM-486 20 - Tcl and macros (DO files)

Model
}
}

}

Provide file root argument and load_wave restores all saved windows.
Default file root is "wave".

proc load_wave {{fileroot "wave"}} {
foreach f [lsort [glob -nocomplain $fileroot\[1-9\].do]] {

echo "Loading: $f"
view -new wave
do $f

}
if {[file exists windowSet_$fileroot.do]} {

do windowSet_$fileroot.do
}

}

...

This next example specifies the compiler arguments and lets you compile any number of
files.

set Files [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set lappend Files $1
shift

}
eval vcom -93 -explicit -noaccel $Files

This example is an enhanced version of the last one. The additional code determines
whether the files are VHDL or Verilog and uses the appropriate compiler and arguments
depending on the file type. Note that the macro assumes your VHDL files have a .vhd file
extension.

set vhdFiles [list]
set vFiles [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
lappend vhdFiles $1

} else {
lappend vFiles $1

}
shift

}
if {[llength $vhdFiles] > 0} {

eval vcom -93 -explicit -noaccel $vhdFiles
}
if {[llength $vFiles] > 0} {

eval vlog $vFiles
}

Sim SE User’s Manual

Macros (DO files) UM-487
Macros (DO files)

ModelSim macros (also called DO files) are simply scripts that contain ModelSim and,
optionally, Tcl commands. You invoke these scripts with the Tools > Execute Macro
menu selection or the do command (CR-151).

Creating DO files

You can create DO files, like any other Tcl script, by typing the required commands in any
editor and saving the file. Alternatively, you can save the transcript as a DO file (see
"Saving the transcript file" (GR-16)).

All "event watching" commands (e.g. onbreak (CR-214), onerror (CR-216), etc.) must be
placed before run (CR-252) commands within the macros in order to take effect.

The following is a simple DO file that was saved from the transcript. It is used in the dataset
exercise in the ModelSim Tutorial. This DO file adds several signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

add wave ld
add wave rst
add wave clk
add wave d
add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force ld 0
force d 1010
onerror {cont}
run 1700
force ld 1
run 100
force ld 0
run 400
force rst 1
run 200
force rst 0 10
run 1500

Using Parameters with DO files

You can increase the flexibility of DO files by using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example say the macro "testfile" contains the line bp $1 $2. The command below would
place a breakpoint in the source file named design.vhd at line 127:

do testfile design.vhd 127

There is no limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. You can use the shift command (CR-266) to see the other
parameters.

Deleting a file from a .do script

To delete a file from a .do script, use the Tcl file command as follows:

file delete myfile.log
ModelSim SE User’s Manual

UM-488 20 - Tcl and macros (DO files)

Model
This will delete the file "myfile.log."

You can also use the transcript file command to perform a deletion:

transcript file ()
transcript file my file.log

The first line will close the current log file. The second will open a new log file. If it has
the same name as an existing file, it will replace the previous one.

Making macro parameters optional

If you want to make macro parameters optional (i.e., be able to specify fewer parameter
values with the do command than the number of parameters referenced in the macro), you
must use the argc (UM-542) simulator state variable. The argc simulator state variable
returns the number of parameters passed. The examples below show several ways of using
argc.

Example 1

This macro specifies the files to compile and handles 0-2 compiler arguments as
parameters. If you supply more arguments, ModelSim generates a message.

switch $argc {
0 {vcom file1.vhd file2.vhd file3.vhd }
1 {vcom $1 file1.vhd file2.vhd file3.vhd }
2 {vcom $1 $2 file1.vhd file2.vhd file3.vhd }
default {echo Too many arguments. The macro accepts 0-2 args. }

}

Example 2

This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set Files [concat $Files $1]
shift

}
eval vcom -93 -explicit -noaccel $Files

Example 3

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the files are VHDL or Verilog and uses the appropriate compiler and
arguments depending on the file type. Note that the macro assumes your VHDL files have
a .vhd file extension.

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFilesExist 0
set vFilesExist 0
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
set vhdFiles [concat $vhdFiles $1]
set vhdFilesExist 1

} else {
set vFiles [concat $vFiles $1]
Sim SE User’s Manual

Macros (DO files) UM-489
set vFilesExist 1
}
shift

}
if {$vhdFilesExist == 1} {

eval vcom -93 -explicit -noaccel $vhdFiles
}
if {$vFilesExist == 1} {

eval vlog $vFiles
}

ModelSim SE User’s Manual

UM-490 20 - Tcl and macros (DO files)

Model
Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes a run-time
error, ModelSim interrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

Error action in DO files

If a command in a macro returns an error, ModelSim does the following:

1 If an onerror (CR-216) command has been set in the macro script, ModelSim executes
that command. The onerror (CR-216) command must be placed prior to the run
command in the DO file to take effect.

2 If no onerror command has been specified in the script, ModelSim checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, its action will be
invoked.

3 If neither 1 or 2 is true, the macro aborts.

command result

run (CR-252) -continue continue as if the breakpoint had not been executed, completes
the run (CR-252) that was interrupted

resume (CR-249) continue running the macro

onbreak (CR-214) specify a command to run when you hit a breakpoint within a
macro

onElabError (CR-215) specify a command to run when an error is encountered during
elaboration

onerror (CR-216) specify a command to run when an error is encountered within a
macro

status (CR-271) get a traceback of nested macro calls when a macro is
interrupted

abort (CR-44) terminate a macro once the macro has been interrupted or
paused

pause (CR-217) cause the macro to be interrupted; the macro can be resumed by
entering a resume command (CR-249) via the command line

transcript (CR-286) control echoing of macro commands to the Transcript pane

Note: You can also set the OnErrorDefaultAction Tcl variable (see "Preference variables
located in Tcl files" (UM-540)) in the pref.tcl file to dictate what action ModelSim takes
when an error occurs.
Sim SE User’s Manual

Macros (DO files) UM-491
Using the Tcl source command with DO files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the source command, the DO file is executed exactly as if the commands in it were
typed in by hand at the prompt. Each time a breakpoint is hit, the Source window is updated
to show the breakpoint. This behavior could be inconvenient with a large DO file
containing many breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any
windows, and keeps the DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running as it hits breakpoints. Add
an onbreak abort command to the DO file if you want to exit the macro and update the
Source window.
ModelSim SE User’s Manual

UM-492 20 - Tcl and macros (DO files)

Model
Macro helper

This tool is available for UNIX only (excluding Linux).

The purpose of the Macro Helper is to aid macro creation by recording a simple series of
mouse movements and key strokes. The resulting file can be called from a more complex
macro by using the play (CR-218) command. Actions recorded by the Macro Helper can
only take place within the ModelSim GUI (window sizing and repositioning are not
recorded because they are handled by your operating system’s window manager). In
addition, the run (CR-252) commands cannot be recorded with the Macro Helper but can be
invoked as part of a complex macro.

Select Tools > Macro Helper to access
the Macro Helper.

• Record a macro
by typing a new macro file name into
the field provided and pressing Record.

• Play a macro
by entering the file name of a Macro
Helper file into the field and pressing Play.

Files created by the Macro Helper can be viewed with the notepad (CR-211).

See "Macro dialog" (GR-102) for more details on the dialog. See the macro_option
command (CR-195) for playback speed, delay, and debugging options for completed macro
files.
Sim SE User’s Manual

The Tcl Debugger UM-493
The Tcl Debugger

We would like to thank Gregor Schmid for making TDebug available for use in the public
domain.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of FITNESS FOR A PARTICULAR
PURPOSE.

Starting the debugger

Select Tools > Tcl Debugger to run the debugger. Make sure you use the ModelSim and
TDebug menu selections to invoke and close the debugger. If you would like more
information on the configuration of TDebug see Help > Technotes > tdebug.

The following text is an edited summary of the README file distributed with TDebug.

How it works

TDebug works by parsing and redefining Tcl/Tk-procedures, inserting calls to `td_eval' at
certain points, which takes care of the display, stepping, breakpoints, variables etc. The
advantages are that TDebug knows which statement in which procedure is currently being
executed and can give visual feedback by highlighting it. All currently accessible variables
and their values are displayed as well. Code can be evaluated in the context of the current
procedure. Breakpoints can be set and deleted with the mouse.

Unfortunately there are drawbacks to this approach. Preparation of large procedures is slow
and due to Tcl's dynamic nature there is no guarantee that a procedure can be prepared at
all. This problem has been alleviated somewhat with the introduction of partial preparation
of procedures. There is still no possibility to get at code running in the global context.

The Chooser

Select Tools > Tcl Debugger to open the TDebug chooser.

The TDebug chooser has three parts. At
the top the current interpreter, vsim.op_,
is shown. In the main section there are
two list boxes. All currently defined
procedures are shown in the left list
box. By clicking the left mouse button
on a procedure name, the procedure
gets prepared for debugging and its
name is moved to the right list box.
Clicking a name in the right list box
returns a procedure to its normal state.

Press the right mouse button on a
procedure in either list box to get its
program code displayed in the main
debugger window.

The three buttons at the bottom let you
force a Rescan of the available
ModelSim SE User’s Manual

UM-494 20 - Tcl and macros (DO files)

Model
procedures, Popup the debugger window or Exit TDebug. Exiting from TDebug doesn't
terminate ModelSim, it merely detaches from vsim.op_, restoring all prepared procedures
to their unmodified state.

The Debugger

Select the Popup button in the Chooser to open the debugger window.

The debugger window is divided into the main region with the name of the current
procedure (Proc), a listing in which the expression just executed is highlighted, the Result
of this execution and the currently available Variables and their values, an entry to Eval
expressions in the context of the current procedure, and some button controls for the state
of the debugger.

A procedure listing displayed in the main region will have a darker background on all lines
that have been prepared. You can prepare or restore additional lines by selecting a region
(<Button-1>, standard selection) and choosing Selection > Prepare Proc or Selection >
Restore Proc from the debugger menu (or by pressing ^P or ^R).

When using `Prepare' and `Restore', try to be smart about what you intend to do. If you
select just a single word (plus some optional white space) it will be interpreted as the name
of a procedure to prepare or restore. Otherwise, if the selection is owned by the listing, the
corresponding lines will be used.

Be careful with partial prepare or restore! If you prepare random lines inside a `switch' or
`bind' expression, you may get surprising results on execution, because the parser doesn't
know about the surrounding expression and can't try to prevent problems.
Sim SE User’s Manual

The Tcl Debugger UM-495
There are seven possible debugger states, one for each button and an ̀ idle' or ̀ waiting' state
when no button is active. The button-activated states are:

Closing the debugger doesn't quit it, it only does `wm withdraw'. The debugger window
will pop up the next time a prepared procedure is called. Make sure you close the debugger
with Debugger > Close.

Breakpoints

To set/unset a breakpoint, double-click inside the listing. The breakpoint will be set at the
innermost available expression that contains the position of the click. Conditional or
counted breakpoints aren’t supported.

The Eval entry supports a simple history mechanism available via the <Up_arrow> and
<Down_arrow> keys. If you evaluate a command while stepping through a procedure, the
command will be evaluated in the context of the procedure; otherwise it will be evaluated
at the global level. The result will be displayed in the result field. This entry is useful for a
lot of things, but especially to get access to variables outside the current scope.

Button Description

Stop stop after next expression, used to get out of slow/fast/nonstop
mode

Next execute one expression, then revert to idle

Slow execute until end of procedure, stopping at breakpoints or when
the state changes to stop; after each execution, stop for ’delay’
milliseconds; the delay can be changed with the ’+’ and ’-’
buttons

Fast execute until end of procedure, stopping at breakpoints

Nonstop execute until end of procedure without stopping at breakpoints or
updating the display

Break terminate execution of current procedure
ModelSim SE User’s Manual

UM-496 20 - Tcl and macros (DO files)

Model
Try entering the line `global td_priv' and watch
the Variables box (with global and array
variables enabled of course).

Configuration

You can customize TDebug by setting up a file named .tdebugrc in your home directory.
See the TDebug README at Help > Technotes > tdebug for more information on the
configuration of TDebug.
Sim SE User’s Manual

TclPro Debugger UM-497
TclPro Debugger

The Tools menu in the Main window contains a selection for the TclPro Debugger from
Scriptics Corporation. This debugger and any available documentation can be acquired
from Scriptics. Once acquired, do the following steps to use the TclPro Debugger:

1 Make sure the TclPro bin directory is in your PATH.

2 In TclPro Debugger, create a new project with Remote Debugging enabled.

3 Start ModelSim and select Tools > TclPro Debugger.

4 Press the Stop button in the debugger in order to set breakpoints, etc.

Note: TclPro Debugger version 1.4 does not work with ModelSim.
ModelSim SE User’s Manual

UM-498 20 - Tcl and macros (DO files)

Model
Sim SE User’s Manual

 UM-499
A - ModelSim GUI changes

Appendix contents
Main window changes UM-500

Memory window changes UM-510

List window changes UM-509

Signals (Objects) window UM-514

Source window changes UM-516

Variables (Locals) window UM-518

ModelSim 6.0 includes many new GUI features and enhancements that are described in this
document. Links within the sections will connect you to more detail.
ModelSim SE User’s Manual

UM-500 A - ModelSim GUI changes

Model
Main window changes

In 6.0, the Main window becomes the primary interface to the tool, providing convenient
access to design libraries and objects, source files, debugging commands, simulation status
messages, etc. Here is what the Main window looks like the very first time you start the
tool:

Panes and Windows

Previous versions of ModelSim used a window layout system for organizing the display of
its debug windows. In 6.0, many of the windows have become "panes," embedded in the
Main window view. However, you can choose to unembed, or undock, these panes so that
they become stand-alone windows. The icon used to undock a pane appears in the upper
right hand corner of the pane, and looks like this:

Workspace Transcript Multiple document interface (MDI) pane

Click this icon to
undock a pane;
click it again to
redock
Sim SE User’s Manual

Main window changes UM-501
See "Customizing the GUI layout" (GR-258) for more information on this and other methods
for changing the view of GUI panes and windows.

Multiple document interface (MDI) frame

The MDI frame, introduced in version 6.0, is an area in the Main window where source
editor, memory content, and wave windows can be displayed. The frame allows multiple
windows to be displayed simultaneously in tabs, as shown below.

Context Sensitivity

In 6.0, the number of menu items which are context-sensitive has increased substantially.
If an item is grayed-out, it is not available in the current context. In general, you can activate
a grayed-out menu item by activating the associated pane/window.

Window tabs - Wave, Source editor, and memory
contents can be displayed here.

Object name
ModelSim SE User’s Manual

UM-502 A - ModelSim GUI changes

Model
File menu

The File menu has several additions and changes. This section presents and illustrates the
changes in the File menu from 5.8 to 6.0.

For complete details on all new 6.0 menu items, refer to "Main window" (GR-14).

• File > New > Window becomes View > Debug Windows

This submenu changes significantly. All windows/panes not specifically discussed or
highlighted remain the same.

• Process window becomes Active Process pane

• Signals window becomes Objects pane

In 6.0, the Signals window has been replaced by the Objects window, reflecting the fact
that it displays all objects that persist through the life of the simulation, not simply
signals.

• Variables window becomes Locals pane

The Variables window has been renamed Locals, which displays all non-persistent
design elements. Non-persistent objects are those which come and go during the course
of simulation.

5.8 6.0 View > Debug WindowsFile > New > Window

This menu selection is removed. Use
File > New > Source to open a new
Source window.

This option is removed. Structure is
viewed in Workspace via the Sim tab.
Sim SE User’s Manual

Main window changes UM-503
• File > Open menu

The File > Open menu has become a simple dialog box in 6.0, allowing you to open
either a file, project, dataset, etc. You may open any file by typing in the name of the file.
Datasets can also be opened also using View > Datasets, selecting one of the datasets
listed in the Dataset Browser, and selecting Open.

• File > Transcript menu

This menu option has become a context-sensitive command. To access any of the GUI
transcript commands, the Transcript pane must be active.

To save the transcript, activate the Transcript pane, click on File > Save or Save As. This
brings up a Save Transcript dialog box where you can enter a name for the file.

To open a transcript file, select File > Open.

To clear the transcript pane, select Edit > Clear. To print a transcript, select File > Print.

To print the transcript, select File > Print.

File > Open > View >5.8 6.0
ModelSim SE User’s Manual

UM-504 A - ModelSim GUI changes

Model
5.8 6.0 File > Transcript File >

Edit >
Sim SE User’s Manual

Main window changes UM-505
View menu

The View menu has been rearranged a bit, but all the items remain.

• View All Windows... becomes View > Debug Windows > All Windows...

A sub menu is added to the View menu for all debug windows. For the name changes of
the windows, see "Main window changes" (UM-500).

See "Main window menu bar" (GR-20) for complete menu option details.

View > View >5.8 6.0
ModelSim SE User’s Manual

UM-506 A - ModelSim GUI changes

Model
Simulate menu

The Simulate menu has incorporated the following changes:

• Design Optimization

You can now gain access to ModelSim’s design optimization features through the
Simulate > Design Optimization. For more information, see "Design Optimization
dialog" (GR-70).

• Simulate > Simulate becomes Simulate > Start Simulation

• Simulate > Simulate Options becomes Simulate > Runtime Options

These changes are in name only. The associated dialog boxes remain functionally the same.

See "Main window" (GR-14) for complete menu option details.

Simulate > Simulate >5.8 6.0
Sim SE User’s Manual

Main window changes UM-507
Tools menu

The 6.0 Main window Tools menu changes as follows:

• Coverage becomes Code Coverage

• Profile > Profile On / Profile Off becomes Profile > Performance (toggles on and off
with selection)

• Profile > View hierarchical profile and View ranked profile become Call Tree and
Ranked tabs in the Profile window

See "Main window menu bar" (GR-20) for complete menu option details.

Tools > Profile > Tools > Profile >5.8 6.0

Profile window6.0
ModelSim SE User’s Manual

UM-508 A - ModelSim GUI changes

Model
Window menu

The 6.0 Window menu removes one selection:

• Window > Layout Style

The window layout styles available in 5.8 have been replaced by the 6.0 MDI (Multiple
Document Interface) system. You can easily move panes by dragging and dropping.

Window > Window >5.8 6.0

Moving panes
around by left-
clicking on top of
pane, dragging and
dropping where
desired.
Sim SE User’s Manual

List window changes UM-509
List window changes

File menu

The List window > File menu changes as follows:

• File > Open Dataset becomes File > Open > Dataset

• File > Save Dataset becomes File > Save > Dataset

• File > Save Format becomes File > Save > Format

• File > Load Format becomes File > Open > Format

See "List window" (GR-153) for complete menu option details.

List window > File 5.8 6.0 List window > File
ModelSim SE User’s Manual

UM-510 A - ModelSim GUI changes

Model
Memory window changes

The Memory window in ModelSim 5.8 has two panes, one for displaying the memory
instance names, and one for displaying the memory contents. In ModelSim 6.0:

• Memory instances viewed through mem tab in Workspace pane of Main window

• Double-click on an instance to view memory contents as one of the tabs in the MDI

5.8

6.0
Sim SE User’s Manual

Memory window changes UM-511
See "Memory windows" (GR-169) for complete menu option details.

File menu

The Memory window > File menu changes as follows:

• File > Environment menu selection removed

• File > Close Instance and Close All

Right-click anywhere in memory contents pane for menu selections.

Memory window > File > Main Menu > File >5.8 6.0

Right-click in mem
pane, in either the
address or data
areas.
ModelSim SE User’s Manual

UM-512 A - ModelSim GUI changes

Model
Edit menu

The Memory window > Edit menu changes as follows:

• Edit > Goto accessible through right-click in address area

• Edit > Change, Find, and Data Search accessible through right-click in data area

Memory window > Edit >5.8 6.0 Right-click in the address area of
the memory contents (mem) pane.

Right-click in the data area of
the mem pane.
Sim SE User’s Manual

Memory window changes UM-513
View menu

The Memory window > View menu changes as follows:

• View > Memory Declaration accessible through right-click on memory instance

• View > Split Screen accessible through right-click in address area of memory contents
pane

Memory window > View >5.8 6.0 Right-click on selected memory
instance within the Workspace pane

Right-click in address area of
memory contents pane
ModelSim SE User’s Manual

UM-514 A - ModelSim GUI changes

Model
Signals (Objects) window

In 6.0, the Signals window becomes the Objects pane, reflecting the fact that it displays all
objects that persist through the life of the simulation, not simply signals. The name change
reflects the increased variety of non-persisting data objects that may be viewed during
simulation.

• Signals window menus are accessible through the Main window > File menu

The Objects pane must be active to view Objects menu selections.

See "Objects pane" (GR-184) for complete menu option details.

File menu

The Signals window > File menu changes as follows:

• File > New Window is not supported

• File > Save List becomes File > Report

Signals window > File 5.8 6.0 Main window (with Objects pane active) > File

Multiple Objects
windows not
supported in 6.0.
Sim SE User’s Manual

Signals (Objects) window UM-515
Edit menu

The Signals window > Edit menu changes as follows:

• Edit > Expand/Collapse menu selections become Main window > Edit > Expand >
Expand Selected, Collapse Selected, Expand All, and Collapse All

• Edit > Force, NoForce, and Clock become Main window > Edit > Advanced > Force,
NoForce, and Clock

Source window > Edit5.8 6.0 Main window > Edit > Expand
> Advanced

(sub-menus)
ModelSim SE User’s Manual

UM-516 A - ModelSim GUI changes

Model
Source window changes

Several changes appear in the File and View menus, as detailed in the following sections.
See "Source window" (GR-199) for complete menu option details.

File menu

The Source window > File menu changes as follows:

• File > Open Design Source is accessible through Main window Workspace > File tab

Source window > File 5.8 6.0 Main window > File tab in Workspace pane
Sim SE User’s Manual

Source window changes UM-517
View menu

The Source window > File menu changes as follows:

• View > Show line numbers / language templates is accessible through View > Source

Source window > File 5.8 6.0 Main window > File tab
ModelSim SE User’s Manual

UM-518 A - ModelSim GUI changes

Model
Variables (Locals) window

In 6.0, the Variables window becomes the Locals pane. The name change reflects the
increased variety of non-persisting data objects that may be viewed during simulation. A
non-persistent object is one which may come and go during the course of simulation. Data
objects which do persist can be viewed using the Objects window (formerly called the
Signals window).

See "Locals pane" (GR-166) for complete menu option details.

Edit menu

The Variables window > Edit menu changes as follows:

• Edit > Expand/Collapse menu selections become Main window > Edit > Expand >
Expand Selected, Collapse Selected, Expand All, and Collapse All

• Edit > Change becomes Main window > Edit > Advanced > Change

Locals window > Edit5.8 6.0 Main window > Edit > Expand
> Advanced
Sim SE User’s Manual

 UM-519
B - ModelSim variables

Appendix contents
Variable settings report UM-520

Personal preferences UM-520

Returning to the original ModelSim defaults UM-520

Environment variables UM-521
Creating environment variables in Windows UM-522
Referencing environment variables within ModelSim . . . UM-523
Removing temp files (VSOUT) UM-523

Preference variables located in INI files UM-524
[Library] library path variables UM-525
[vlog] Verilog compiler control variables. UM-525
[vcom] VHDL compiler control variables UM-527
[sccom] SystemC compiler control variables UM-528
[vsim] simulator control variables UM-529
[lmc] Logic Modeling variables UM-536
[msg_system] message system variables UM-536
Reading variable values from the INI file. UM-536
Commonly used INI variables UM-537

Preference variables located in Tcl files UM-540

Variable precedence UM-541

Simulator state variables UM-542
Referencing simulator state variables UM-542
Special considerations for the now variable UM-543

This appendix documents the following types of ModelSim variables:

• environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the ModelSim environment prior to simulation.

• ModelSim preference variables
Variables used to control compiler or simulator functions and modify the appearance of
the ModelSim GUI.

• simulator state variables
Variables that provide feedback on the state of the current simulation.
ModelSim SE User’s Manual

UM-520 B - ModelSim variables

Model
Variable settings report

The report command (CR-244) returns a list of current settings for either the simulator state,
or simulator control variables. Use the following commands at either the ModelSim or
VSIM prompt:

report simulator state
report simulator control

The simulator control variables reported by the report simulator control command can be
set interactively using the Tcl set command (UM-477).

Personal preferences

There are several preferences stored by ModelSim on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferences are stored in $(HOME)/.modelsim on
UNIX and in the Windows Registry under HKEY_CURRENT_USER\Software\Model
Technology Incorporated\ModelSim. Among these preferences are:

• mti_ask_LBViewTypes, mti_ask_LBViewPath, mti_ask_LBViewLoadable
Settings for the Customize Library View dialog. Determine the view of the Library tab
in the Workspace pane.

• mti_pane_cnt, mti_pane_size, pane_#, pane_percent
Determine the layout of various panes in the Main window.

• open_workspace
Setting for whether or not to display the Workspace pane.

• pinit
Project Initialization state (one of: Welcome | OpenLast | NoWelcome). This determines
whether the Welcome To ModelSim dialog box appears when you invoke the tool.

• project_history
Project history.

• printersetup
All setup parameters related to printing (i.e., current printer, etc.).

• transcriptpercent
The size of the Transcript pane. Expressed as a percentage of the width of the Main
window.

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.

Returning to the original ModelSim defaults

If you would like to return ModelSim’s interface to its original state, simply rename or
delete the existing modelsim.tcl and modelsim.ini files. ModelSim will use pref.tcl for GUI
preferences and make a copy of <install_dir>/modeltech/modelsim.ini to use the next time
ModelSim is invoked without an existing project (if you start a new project the new MPF
file will use the settings in the new modelsim.ini file).
Sim SE User’s Manual

Environment variables UM-521
Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 98/Me machines, and set through the System control panel on NT/2000/XP
machines. For UNIX, the variables are typically found in the .login script. The
LM_LICENSE_FILE variable is required; all others are optional.

Variable Description

DOPATH used by ModelSim to search for DO files (macros); consists of a colon-separated
(semi-colon for Windows) list of paths to directories; this environment variable
can be overridden by the DOPATH Tcl preference variable

The DOPATH environment variable isn’t accessible when you invoke vsim from
a Unix shell or from a Windows command prompt. It is accessible once ModelSim
or vsim is invoked. If you need to invoke from a shell or command line and use
the DOPATH environment variable, use the following syntax:

vsim -do "do <dofile_name>" <design_unit>

EDITOR specifies the editor to invoke with the edit command (CR-157)

HOME used by ModelSim to look for an optional graphical preference file and optional
location map file; see: "Preference variables located in INI files" (UM-524)

LM_LICENSE_FILE used by the ModelSim license file manager to find the location of the license file;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED

MODEL_TECH set by all ModelSim tools to the directory in which the binary executable resides;
DO NOT SET THIS VARIABLE!

MODEL_TECH_TCL used by ModelSim to find Tcl libraries for Tcl/Tk 8.3 and vsim; may also be used
to specify a startup DO file; defaults to /modeltech/../tcl; may be set to an alternate
path

MGC_LOCATION_MAP used by ModelSim tools to find source files based on easily reallocated "soft"
paths; optional; see the Tcl variables: SourceDir and SourceMap

MODELSIM used by all ModelSim tools to find the modelsim.ini file; consists of a path
including the file name. An alternative use of this variable is to set it to the path of
a project file (<Project_Root_Dir>/<Project_Name>.mpf). This allows you to
use project settings with command line tools. However, if you do this, the .mpf
file will replace modelsim.ini as the initialization file for all ModelSim tools.

MODELSIM_TCL used by ModelSim to look for an optional graphical preference file; can be a
colon-separated (UNIX) or semi-colon separated (Windows) list of file paths

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging information about FLI/PLI/
VPI function calls; set to any value before invoking the simulator.
ModelSim SE User’s Manual

UM-522 B - ModelSim variables

Model
Creating environment variables in Windows

In addition to the predefined variables shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 98/Me

Open and edit the autoexec.bat file by adding this line:

set MY_PATH=\temp\work

Restart Windows to initialize the new variable.

Using Windows NT/2000/XP

Right-click the My Computer icon and select Properties, then select the Environment
tab (in Windows 2000/XP select the Advanced tab and then Environment Variables). Add
the new variable with this data—Variable:MY_PATH and Value:\temp\work.

Click Set and Apply to initialize the variable.

MTI_TF_LIMIT limits the size of the VSOUT temp file (generated by the ModelSim kernel); the
value of the variable is the size of k-bytes; TMPDIR (below) controls the location
of this file, STDOUT controls the name; default = 10, 0 = no limit; does not
control the size of the transcript file

MTI_USELIB_DIR specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the vlog command (CR-358)

MTI_VCO_MODE determines which version of ModelSim to use on platforms that support both 32-
and 64-bit versions when ModelSim executables are invoked from the modeltech/
bin directory by a Unix shell command (using full path specification or PATH
search); if MTI_VCO_MODE is not set, the preference is given to the highest
performance installed version

NOMMAP if set to 1, disables memory mapping in ModelSim; this should be used only when
running on Linux 7.1; it will decrease the speed with which ModelSim reads files

PLIOBJS used by ModelSim to search for PLI object files for loading; consists of a
space-separated list of file or path names

STDOUT the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify a filename for VSOUT with
STDOUT; specifying a name and location (use TMPDIR) for the VSOUT file will
also help you locate and delete the file in event of a crash (an unnamed VSOUT
file is not deleted after a crash either)

TMPDIR (Unix)
TMP (Windows)

specifies the path to a tempnam() generated file (VSOUT) containing all stdout
from the simulation kernel

Variable Description
Sim SE User’s Manual

Environment variables UM-523
Library mapping with environment variables

Once the MY_PATH variable is set, you can use it with the vmap command (CR-370) to
add library mappings to the current modelsim.ini file.

 If you’re using the vmap command from a DOS prompt type:

vmap MY_VITAL %MY_PATH%

 If you’re using vmap from the ModelSim/VSIM prompt type:

vmap MY_VITAL \$MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:

MY_VITAL = c:\temp\work

If vmap is used from the ModelSim/VSIM prompt, the modelsim.ini file will be modified
with this line:

 MY_VITAL = $MY_PATH

You can easily add additional hierarchy to the path. For example,

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path

vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

The "$" character in the examples above is Tcl syntax that precedes a variable. The "\"
character is an escape character that keeps the variable from being evaluated during the
execution of vmap.

Referencing environment variables within ModelSim

There are two ways to reference environment variables within ModelSim. Environment
variables are allowed in a FILE variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begin

process
FILE in_file : text is in "$ENV_VAR_NAME";

begin
wait;

end process;
end;

Environment variables may also be referenced from the ModelSim command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME)"

Removing temp files (VSOUT)

The VSOUT temp file is the communication mechanism between the simulator kernel and
the ModelSim GUI. In normal circumstances the file is deleted when the simulator exits. If
ModelSim crashes, however, the temp file must be deleted manually. Specifying the
location of the temp file with TMPDIR (above) will help you locate and remove the file.

Note: Environment variable expansion does not occur in files that are referenced via the
-f argument to vcom, vlog, or vsim.
ModelSim SE User’s Manual

UM-524 B - ModelSim variables

Model
Preference variables located in INI files

ModelSim initialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings. The default initialization file is modelsim.ini and
is located in your install directory.

To set these variables, edit the initialization file directly with any text editor. The syntax for
variables in the file is:

<variable> = <value>

Comments within the file are preceded with a semicolon (;).

The following tables list the variables by section, and in order of their appearance within
the INI file:

INI file sections

[Library] library path variables (UM-525)

[vlog] Verilog compiler control variables (UM-525)

[vcom] VHDL compiler control variables (UM-527)

[sccom] SystemC compiler control variables (UM-528)

[vsim] simulator control variables (UM-529)

[lmc] Logic Modeling variables (UM-536)
Sim SE User’s Manual

Preference variables located in INI files UM-525
[Library] library path variables

[vlog] Verilog compiler control variables

Variable name Value range Purpose

ieee any valid path; may include
environment variables

sets the path to the library containing IEEE and
Synopsys arithmetic packages; the default is
$MODEL_TECH/../ieee

modelsim_lib any valid path; may include
environment variables

sets the path to the library containing Model
Technology VHDL utilities such as Signal Spy;
the default is $MODEL_TECH/../modelsim_lib

std any valid path; may include
environment variables

sets the path to the VHDL STD library; the default
is $MODEL_TECH/../std

std_developerskit any valid path; may include
environment variables

sets the path to the libraries for MGC standard
developer’s kit; the default is
$MODEL_TECH/../std_developerskit

synopsys any valid path; may include
environment variables

sets the path to the accelerated arithmetic
packages; the default is $MODEL_TECH/../
synopsys

verilog any valid path; may include
environment variables

sets the path to the library containing VHDL/
Verilog type mappings; the default is
$MODEL_TECH/../verilog

vital2000 any valid path; may include
environment variables

sets the path to the VITAL 2000 library; the
default is $MODEL_TECH/../vital2000

others any valid path; may include
environment variables

points to another modelsim.ini file whose library
path variables will also be read; the pathname
must include "modelsim.ini"; only one others
variable can be specified in any modelsim.ini file.

Variable name Value
range

Purpose Default

Hazard 0, 1 if 1, turns on Verilog hazard checking (order-
dependent accessing of global variables)

off (0)

EmbeddedPsl 0, 1 if 1, enables parsing of embedded PSL statements in
Verilog files

on (0)

GenerateLoopIterationMax natural
integer
(>=0)

the maximum number of iterations permitted for a
generate loop; restricting this permits the
implementation to recognize infinite generate loops

100000

GenerateRecursionDepthMax natural
integer
(>=0)

the maximum depth permitted for a recursive
generate instantiation; restricting this permits the
implementation to recognize infinite recursions

200
ModelSim SE User’s Manual

UM-526 B - ModelSim variables

Model
Incremental 0, 1 if 1, turns on incremental compilation of modules off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

Protect 0, 1 if 1, enables `protect directive processing; see
"ModelSim compiler directives" (UM-155) for details

off (0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

Show_Lint 0, 1 if 1, turns on lint-style checking off (0)

ScalarOpts 0, 1 if 1, activates optimizations on expressions that don’t
involve signals, waits, or function/procedure/task
invocations

off (0)

Show_BadOptionWarning 0, 1 if 1, generates a warning whenever an unknown plus
argument is encountered

off (0)

Show_PslChecksWarnings 0, 1 if 1, displays PSL warning messages on (1)

Show_source 0, 1 if 1, shows source line containing error off (0)

SparseMemThreshhold natural
integer
(>=0)

the size at which memories will automatically be
marked as sparse memory; see "Sparse memory
modeling" (UM-156)

off (0)

vlog95compat 0, 1 if 1, disables SystemVerilog and Verilog 2001
support and makes compiler compatible with IEEE
Std 1364-1995

off (0)

UpCase 0, 1 if 1, turns on converting regular Verilog identifiers to
uppercase. Allows case insensitivity for module
names; see also "Verilog-XL compatible compiler
arguments" (UM-119)

off (0)

Variable name Value
range

Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-527
[vcom] VHDL compiler control variables

Variable name Value
range

Purpose Default

BindAtCompile 0, 1 if 1, instructs ModelSim to perform VHDL default
binding at compile time rather than load time; see
"Default binding" (UM-79) for further details

off (0)

CheckSynthesis 0, 1 if 1, turns on limited synthesis rule compliance
checking; checks only signals used (read) by a
process; also, understands only combinational
logic, not clocked logic

off (0)

EmbeddedPsl 0, 1 if 1, enables parsing of embedded PSL statements in
VHDL files

on (0)

Explicit 0, 1 if 1, turns on resolving of ambiguous function
overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)

on (1)

IgnoreVitalErrors 0, 1 if 1, ignores VITAL compliance checking errors off (0)

NoCaseStaticError 0, 1 if 1, changes case statement static errors to warnings off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

NoIndexCheck 0, 1 if 1, run time index checks are disabled off (0)

NoOthersStaticError 0, 1 if 1, disables errors caused by aggregates that are
not locally static

off (0)

NoRangeCheck 0, 1 if 1, disables run time range checking off (0)

NoVital 0, 1 if 1, turns off acceleration of the VITAL packages off (0)

NoVitalCheck 0, 1 if 1, turns off VITAL compliance checking off (0)

Optimize_1164 0, 1 if 0, turns off optimization for the IEEE
std_logic_1164 package

on (1)

PedanticErrors 0, 1 if 1, overrides NoCaseStaticError and
NoOthersStaticError

off(0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

RequireConfigForAllDefault
Binding

0, 1 if 1, instructs the compiler not to generate a default
binding during compilation

off (0)

ScalarOpts 0, 1 if 1, activates optimizations on expressions that
don’t involve signals, waits, or function/procedure/
task invocations

off (0)

Show_Lint 0, 1 if 1, turns on lint-style checking off (0)
ModelSim SE User’s Manual

UM-528 B - ModelSim variables

Model
[sccom] SystemC compiler control variables

Show_PslChecksWarnings 0, 1 if 1, displays PSL warning messages on (1)

Show_source 0, 1 if 1, shows source line containing error off (0)

Show_VitalChecksWarnings 0, 1 if 0, turns off VITAL compliance-check warnings on (1)

Show_Warning1 0, 1 if 0, turns off unbound-component warnings on (1)

Show_Warning2 0, 1 if 0, turns off process-without-a-wait-statement
warnings

on (1)

Show_Warning3 0, 1 if 0, turns off null-range warnings on (1)

Show_Warning4 0, 1 if 0, turns off no-space-in-time-literal warnings on (1)

Show_Warning5 0, 1 if 0, turns off multiple-drivers-on-unresolved-signal
warnings

on (1)

VHDL93 0, 1, 2 if 0, enables support for VHDL-1987; if 1, enables
support for VHDL-1993; if 2, enables support for
VHDL-2002

2

Variable name Value
range

Purpose Default

CppOptions any valid
C+++
compiler
options

adds any specified C++ compiler options to the
sccom command line at the time of invocation

none

CppPath C++
compiler
path

If used, variables should point directly to the location
of the g++ executable, such as:
% CppPath /usr/bin/g++

This variable is not required when running SystemC
designs. By default, you should install and use the
built-in g++ compiler that comes with ModelSim

none

SccomLogfile 0, 1 if 1, creates a logfile for sccom off (0)

SccomVerbose 0, 1 if 1, turns on verbose messages from sccom (CR-254):
see "-verbose" (CR-256) for details

off (0)

UseScv 0, 1 if 1, turns on use of SCV include files and library;
see"-scv" (CR-255) for details

off (0)

Variable name Value
range

Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-529
[vsim] simulator control variables

Variable name Value range Purpose Default

AssertFile any valid
filename

alternative file for storing VHDL or PSL
assertion messages

transcript

AssertionFailAction 0, 1, 2 sets action for a PSL failure event; use 0 for
continue, 1 for break, 2 for exit

continue (0)

AssertionFailEnable 0, 1 turns on failure tracking for PSL assertions on (1)

AssertionFailLimit Any positive
integer and -1

sets limit for the number of times
ModelSim will respond to a PSL assertion
failure event; after the limit is reached on a
particular assertion, that assertion is
disabled; use -1 for infinity

1

AssertionFailLog 0, 1 turns on transcript logging for PSL
assertion failure events

on (1)

AssertionFormat see next column defines format of VHDL assertion
messages; fields include:
%S - severity level
%R - report message
%T - time of assertion
%D - delta
%I - instance or region pathname (if
available)
%i - instance pathname with process
%O - process name
%K - kind of object path points to; returns
Instance, Signal, Process, or Unknown
%P - instance or region path without leaf
process
%F - file
%L - line number of assertion, or if from
subprogram, line from which call is made
%% - print ’%’ character

"** %S:
%R\n Time:
%T
Iteration:
%D%I\n"

AssertionFormatBreak see
AssertionFormat
above

defines format of messages for VHDL
assertions that trigger a breakpoint; see
AssertionFormat for options

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatError see
AssertionFormat
above

defines format of messages for VHDL
Error assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"
ModelSim SE User’s Manual

UM-530 B - ModelSim variables

Model
AssertionFormatFail see
AssertionFormat
above

defines format of messages for VHDL Fail
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatFatal see
AssertionFormat
above

defines format of messages for VHDL Fatal
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatNote see
AssertionFormat
above

defines format of messages for VHDL Note
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D%I\n"

AssertionFormatWarning see
AssertionFormat
above

defines format of messages for VHDL
Warning assertions; see AssertionFormat
for options; if undefined, AssertionFormat
is used unless assertion causes a breakpoint
in which case AssertionFormatBreak is
used

"** %S:
%R\n
Time: %T
Iteration:
%D%I\n"

AssertionPassEnable 0, 1 turns on pass tracking for PSL assertions off (0)

AssertionPassLimit Any positive
integer and -1

sets limit for the number of times
ModelSim will respond to a PSL assertion
pass event; after the limit is reached on a
particular assertion, that assertion is
disabled; use -1 for infinity

1

AssertionPassLog 0, 1 turns on transcript logging for PSL
assertion pass events

on (1)

BreakOnAssertion 0-4 defines severity of VHDL assertion that
causes a simulation break (0 = note, 1 =
warning, 2 = error, 3 = failure, 4 = fatal);
this variable can be set interactively with
the Tcl set command (UM-477)

3

CheckPlusargs 0, 1, 2 if 0, vsim ignores unrecognized plusargs;
if 1, vsim produces warnings for
unrecognized plusargs, but will simulate
ignoring the unrecognized plusargs;
if 2, vsim produces errors for unrecognized
plusargs and exits

off (0)

Variable name Value range Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-531
CheckpointCompressMode 0, 1 if 1, checkpoint files are written in
compressed format; this variable can be set
interactively with the Tcl set command
(UM-477)

on (1)

CommandHistory any valid
filename

sets the name of a file in which to store the
Main window command history

commented
out (;)

ConcurrentFileLimit any positive
integer

controls the number of VHDL files open
concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited

40

CoverAtLeast any positive
integer

the minimum number of times a functional
coverage directive must evaluate to true

1

CoverEnable 0, 1 if 1, all functional coverage directives in the
current simulation are enabled

1

CoverLimit any positive
integer

specifies the number of cover directive hits
before the directive is auto disabled

1

CoverLog 0, 1 turns on transcript logging for functional
coverage directive counting

on (1)

CoverWeight natural integer
(>=0)

the relative weighting for functional
coverage directives

1

DatasetSeparator any character
except those with
special meaning
(i.e., \, {, }, etc.)

the dataset separator for fully-rooted
contexts, for example sim:/top; must not be
the same character as PathSeparator

:

DefaultForceKind freeze, drive, or
deposit

defines the kind of force used when not
otherwise specified; this variable can be set
interactively with the Tcl set command
(UM-477)

drive for
resolved
signals;
freeze for
unresolved
signals

DefaultRadix symbolic, binary,
octal, decimal,
unsigned,
hexadecimal,
ascii

a numeric radix may be specified as a name
or number (i.e., binary can be specified as
binary or 2; octal as octal or 8; etc.); this
variable can be set interactively with the Tcl
set command (UM-477)

symbolic

DefaultRestartOptions one or more of:
-force,
-noassertions,
-nobreakpoint,
-nolist, -nolog,
-nowave

sets default behavior for the restart
command

commented
out (;)

Variable name Value range Purpose Default
ModelSim SE User’s Manual

UM-532 B - ModelSim variables

Model
DelayFileOpen 0, 1 if 1, open VHDL87 files on first read or
write, else open files when elaborated; this
variable can be set interactively with the Tcl
set command (UM-477)

off (0)

GenerateFormat Any non-quoted
string containing
at a minimum a
%s followed by a
%d

controls the format of a generate statement
label (don't quote it)

 %s__%d

GlobalSharedObjectsList comma seperated
list of filenames

loads the specified PLI/FLI shared objects
with global symbol visibility

commented
out (;)

IgnoreError 0,1 if 1, ignore assertion errors; this variable
can be set interactively with the Tcl set
command (UM-477)

off (0)

IgnoreFailure 0,1 if 1, ignore assertion failures; this variable
can be set interactively with the Tcl set
command (UM-477)

off (0)

IgnoreNote 0,1 if 1, ignore assertion notes; this variable can
be set interactively with the Tcl set
command (UM-477)

off (0)

IgnoreWarning 0,1 if 1, ignore assertion warnings; this variable
can be set interactively with the Tcl set
command (UM-477)

off (0)

IterationLimit positive integer limit on simulation kernel iterations
allowed without advancing time; this
variable can be set interactively with the Tcl
set command (UM-477)

5000

License any single
<license_option>

if set, controls ModelSim license file
search; license options include:
nomgc - excludes MGC licenses
nomti - excludes MTI licenses
noqueue - do not wait in license queue if no
licenses are available
plus - only use PLUS license
vlog - only use VLOG license
vhdl - only use VHDL license
viewsim - accepts a simulation license
rather than being queued for a viewer
license

see also the vsim command (CR-373)
<license_option>

search all
licenses

Variable name Value range Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-533
NumericStdNoWarnings 0, 1 if 1, warnings generated within the
accelerated numeric_std and numeric_bit
packages are suppressed; this variable can
be set interactively with the Tcl set
command (UM-477)

off (0)

PathSeparator any character
except those with
special meaning
(i.e., \, {, }, etc.)

used for hierarchical pathnames; must not
be the same character as DatasetSeparator;
this variable can be set interactively with
the Tcl set command (UM-477)

/

Resolution fs, ps, ns, us, ms,
or sec with
optional prefix of
1, 10, or 100

simulator resolution; no space between
value and units (i.e., 10fs, not 10 fs);
overridden by the -t argument to vsim (CR-

373); if your delays get truncated, set the
resolution smaller; this value must be less
than or equal to the UserTimeUnit
(described below)

ns

RunLength positive integer default simulation length in units specified
by the UserTimeUnit variable; this variable
can be set interactively with the Tcl set
command (UM-477)

100

Show3DMem 0, 1 controls whether or not arrays of 3 or more
dimensions are listed as memories in the
Memory pane; this variable can be set with
the Tcl set command (UM-477)

on (1)

ShowIntMem 0, 1 controls whether or not integer arrays are
listed as memories in the Memory pane; this
variable can be set with the Tcl set
command (UM-477)

on (1)

ShowEnumMem 0, 1 controls whether or not enumerated type
arrays (other than std_logic-based arrays)
are listed as memories in the Memory pane;
this variable can be set with the Tcl set
command (UM-477)

on (1)

ShowUnassociatedScNameWa
rning

0, 1 if 1, displays unassociated SystemC name
warnings

off (1)

ShowUndebuggableScTypeWa
rning

0, 1 if 1, displays undebuggable SystemC type
warnings

on (1)

SimulateAssumeDirectives 0, 1 if 1, PSL assume directives are simulated as
if they were assert directives; see
"Processing assume directives in
simulation" (UM-363) for more information

on (1)

Variable name Value range Purpose Default
ModelSim SE User’s Manual

UM-534 B - ModelSim variables

Model
Startup = do <DO
filename>; any
valid macro (do)
file

specifies the ModelSim startup macro; see
the do command (CR-151)

commented
out (;)

StdArithNoWarnings 0, 1 if 1, warnings generated within the
accelerated Synopsys std_arith packages
are suppressed; this variable can be set
interactively with the Tcl set command

off (0)

TranscriptFile any valid
filename

file for saving command transcript;
environment variables may be included in
the pathname

transcript

UnbufferedOutput 0, 1 controls VHDL and Verilog files open for
write; 0 = Buffered, 1 = Unbuffered

0

UseCsupV2 0, 1 instructs vsim to use /usr/lib/libCsup_v2.sl
for shared object loading; for use only on
HP-UX 11.00 when you have compiled
FLI/PLI/VPI C++ code with aCC's -AA
option

off (0)

UserTimeUnit fs, ps, ns, us, ms,
sec, or default

specifies scaling for the Wave window and
the default time units to use for commands
such as force (CR-180) and run (CR-252);
should generally be set to default, in which
case it takes the value of the Resolution
variable; this variable can be set
interactively with the Tcl set command
(UM-477)

default

Veriuser one or more valid
shared object
names

list of dynamically loadable objects for
Verilog PLI/VPI applications; see
Appendix D - Verilog PLI / VPI / DPI

commented
out (;)

VoptFlow 0,1 if 1, ModelSim operates in optimized mode
rather than debug mode

off (0)

WaveSignalNameWidth 0, positive
integer

controls the number of visible hierarchical
regions of a signal name shown in the
"Wave window" (GR-211); the default value
of zero displays the full name, a setting of
one or above displays the corresponding
level(s) of hierarchy

0

WLFCollapseMode 0, 1, 2 if 0, WLF file records values at every
change of the logged objects; if 1, WLF file
records values only at the end of each delta
step; if 2, WLF file records values only at
the end of a simulator time step

1

Variable name Value range Purpose Default
Sim SE User’s Manual

Preference variables located in INI files UM-535
WLFCompress 0, 1 turns WLF file compression on (1) or off (0) 1

WLFDeleteOnQuit 0, 1 specifies whether a WLF file should be
deleted when the simulation ends; if set to
0, the file is not deleted; if set to 1, the file
is deleted

0

WLFFilename 0, 1 specifies the default WLF file name vsim.wlf

WLFOptimize 0, 1 specifies whether the viewing of
waveforms is optimized; default is enabled;
WLF files created prior to ModelSim
version 5.8 cannot take advantage of the
optimization

1

WLFSaveAllRegions 0, 1 specifies whether to save all design
hierarchy in the WLF file (1) or only
regions containing logged signals (0)

0

WLFSizeLimit 0 - positive
integer of MB

WLF file size limit; limits WLF file by size
(as closely as possible) to the specified
number of megabytes; if both size and time
limits are specified the most restrictive is
used; setting to 0 results in no limit

0

WLFTimeLimit 0 - positive
integer, time unit
is optional

WLF file time limit; limits WLF file by
time (as closely as possible) to the specified
amount of time. If both time and size limits
are specified the most restrictive is used;
setting to 0 results in no limit

0

Variable name Value range Purpose Default
ModelSim SE User’s Manual

UM-536 B - ModelSim variables

Model
[lmc] Logic Modeling variables

Logic Modeling SmartModels and hardware modeler interface

ModelSim’s interface with Logic Modeling’s SmartModels and hardware modeler are
specified in the [lmc] section of the INI/MPF file; for more information see "VHDL
SmartModel interface" (UM-618) and "VHDL hardware model interface" (UM-628)
respectively.

[msg_system] message system variables

The message system variables help you identify and troubleshoot problems while using the
application. See also ModelSim message system (UM-546).

Reading variable values from the INI file

You can read values from the modelsim.ini file with the following function:

GetPrivateProfileString <section> <key> <defaultValue>

Reads the string value for the specified variable in the specified section. Optionally
provides a default value if no value is present.

Setting Tcl variables with values from the modelsim.ini file is one use of these Tcl
functions. For example,

set MyCheckpointCompressMode [GetPrivateProfileString vsim
CheckpointCompressMode 1]

set PrefMain(file) [GetPrivateProfileString vsim TranscriptFile ""]

Variable name Value range Purpose Default

error list of message
numbers

changes the severity of the listed message numbers to
"error"; see "Changing message severity level" (UM-

546) for more information

none

note list of message
numbers

changes the severity of the listed message numbers to
"note"; see "Changing message severity level" (UM-

546) for more information

none

suppress list of message
numbers

suppresses the listed message numbers; see
"Changing message severity level" (UM-546) for more
information

none

warning list of message
numbers

changes the severity of the listed message numbers to
"warning"; see "Changing message severity level"
(UM-546) for more information

none
Sim SE User’s Manual

Preference variables located in INI files UM-537
Commonly used INI variables

Several of the more commonly used modelsim.ini variables are further explained below.

Environment variables

You can use environment variables in your initialization files. Use a dollar sign ($) before
the environment variable name. For example:

[Library]
work = $HOME/work_lib
test_lib = ./$TESTNUM/work
...
[vsim]
IgnoreNote = $IGNORE_ASSERTS
IgnoreWarning = $IGNORE_ASSERTS
IgnoreError = 0
IgnoreFailure = 0

There is one environment variable, MODEL_TECH, that you cannot — and should not —
set. MODEL_TECH is a special variable set by Model Technology software. Its value is
the name of the directory from which the VCOM or VLOG compilers or VSIM simulator
was invoked. MODEL_TECH is used by the other Model Technology tools to find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search only the library section of the initialization file specified by the "others" clause.
For example:

[Library]
asic_lib = /cae/asic_lib
work = my_work
others = /install_dir/modeltech/modelsim.ini

Since the file referred to by the "others" clause may itself contain an "others" clause, you
can use this feature to chain a set of hierarchical INI files for library mappings.

Creating a transcript file

A feature in the system initialization file allows you to keep a record of everything that
occurs in the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
file in which you would like to record the ModelSim history.

; Save the command window contents to this file
TranscriptFile = trnscrpt

You can disable the creation of the transcript file by using the following ModelSim
command immediately after ModelSim starts:

transcript file ""
ModelSim SE User’s Manual

UM-538 B - ModelSim variables

Model
Using a startup file

The system initialization file allows you to specify a command or a do file that is to be
executed after the design is loaded. For example:

; VSIM Startup command
Startup = do mystartup.do

The line shown above instructs ModelSim to execute the commands in the macro file
named mystartup.do.

; VSIM Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.

See the do command (CR-151) for additional information on creating do files.

Turning off assertion messages

You can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsim]
IgnoreNote = 1
IgnoreWarning = 1
IgnoreError = 1
IgnoreFailure = 1

Turning off warnings from arithmetic packages

You can disable warnings from the Synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsim]
NumericStdNoWarnings = 1
StdArithNoWarnings = 1

These variables can also be set interactively using the Tcl set command (UM-477). This
capability provides an answer to a common question about disabling warnings at time 0.
You might enter commands like the following in a DO file or at the ModelSim prompt:

set NumericStdNoWarnings 1
run 0
set NumericStdNoWarnings 0
run -all

Alternatively, you could use the when command (CR-407) to accomplish the same thing:

when {$now = @1ns } {set NumericStdNoWarnings 1}
run -all

Note that the time unit (ns in this case) would vary depending on your simulation
resolution.
Sim SE User’s Manual

Preference variables located in INI files UM-539
Force command defaults

The force command has -freeze, -drive, and -deposit options. When none of these is
specified, then -freeze is assumed for unresolved signals and -drive is assumed for resolved
signals. But if you prefer -freeze as the default for both resolved and unresolved signals,
you can change the defaults in the modelsim.ini file.

[vsim]
; Default Force Kind
; The choices are freeze, drive, or deposit
DefaultForceKind = freeze

Restart command defaults

The restart command has -force, -nobreakpoint, -nolist, -nolog, and -nowave options.
You can set any of these as defaults by entering the following line in the modelsim.ini file:

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.

Example: DefaultRestartOptions = -nolog -force

Note: You can also set these defaults in the modelsim.tcl file. The Tcl file settings will override
the .ini file settings.

VHDL standard

You can specify which version of the 1076 Std ModelSim follows by default using the
VHDL93 variable:

[vcom]
; VHDL93 variable selects language version as the default.
; Default is VHDL-2002.
; Value of 0 or 1987 for VHDL-1987.
; Value of 1 or 1993 for VHDL-1993.
; Default or value of 2 or 2002 for VHDL-2002.
VHDL93 = 2002

Opening VHDL files

You can delay the opening of VHDL files with an entry in the INI file if you wish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen
option is enabled, then the file is not opened until the first read or write to that file.

[vsim]
DelayFileOpen = 1
ModelSim SE User’s Manual

UM-540 B - ModelSim variables

Model
Preference variables located in Tcl files

ModelSim Tcl preference variables give you control over fonts, colors, prompts, and other
GUI characteristics. See "ModelSim GUI preferences" (GR-266) for more information.
Sim SE User’s Manual

Variable precedence UM-541
Variable precedence

Note that some variables can be set in a .tcl file or a .ini file. A variable set in a .tcl file takes
precedence over the same variable set in a .ini file. For example, assume you have the
following line in your modelsim.ini file:

TranscriptFile = transcript

And assume you have the following line in your modelsim.tcl file:

set PrefMain(file) {}

In this case the setting in the modelsim.tcl file will override that in the modelsim.ini file, and
a transcript file will not be produced.
ModelSim SE User’s Manual

UM-542 B - ModelSim variables

Model
Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return a value
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO files (macros). The variables are referenced in
commands by prefixing the name with a dollar sign ($).

Referencing simulator state variables

Variable values may be referenced in simulator commands by preceding the variable name
with a dollar sign ($). For example, to use the now and resolution variables in an echo
command type:

echo "The time is $now $resolution."

Depending on the current simulator state, this command could result in:

The time is 12390 ps 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a "\". For
example, \$now will not be interpreted as the current simulator time.

Variable Result

argc returns the total number of parameters passed to the current macro

architecture returns the name of the top-level architecture currently being
simulated; for an optimized Verilog module, returns architecture
name; for a configuration or non-optimized Verilog module, this
variable returns an empty string

configuration returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingLevel returns the current depth of macro call nesting

n represents a macro parameter, where n can be an integer in the range
1-9

Now always returns the current simulation time with time units (e.g.,
110,000 ns) Note: will return a comma between thousands

now when time resolution is a unary unit (i.e., 1ns, 1ps, 1fs): returns the
current simulation time without time units (e.g., 100000)
when time resolution is a multiple of the unary unit (i.e., 10ns,
100ps, 10fs): returns the current simulation time with time units
(e.g. 110000 ns) Note: will not return comma between thousands

resolution returns the current simulation time resolution
Sim SE User’s Manual

Simulator state variables UM-543
Special considerations for the now variable

For the when command (CR-407), special processing is performed on comparisons
involving the now variable. If you specify "when {$now=100}...", the simulator will stop
at time 100 regardless of the multiplier applied to the time resolution.

You must use 64-bit time operators if the time value of now will exceed 2147483647 (the
limit of 32-bit numbers). For example:

if { [gtTime $now 2us] } {
.
.
.

See "ModelSim Tcl time commands" (UM-481) for details on 64-bit time operators.
ModelSim SE User’s Manual

UM-544 B - ModelSim variables

Model
Sim SE User’s Manual

 UM-545
C - Error and warning messages

Appendix contents
ModelSim message system UM-546

Message format UM-546
Getting more information UM-546
Changing message severity level UM-546

Suppressing warning messages UM-548
Suppressing VCOM warning messages UM-548
Suppressing VLOG warning messages UM-548
Suppressing VSIM warning messages UM-548

Exit codes UM-549

Miscellaneous messages UM-551
Empty port name warning. UM-551
Lock message UM-551
Metavalue detected warning UM-552
Sensitivity list warning UM-552
Tcl Initialization error 2 UM-552
Too few port connections UM-554
VSIM license lost UM-555

sccom error messages UM-556
Failed to load sc lib error: undefined symbol UM-556
Multiply defined symbols UM-557

This appendix documents various status and warning messages that are produced by
ModelSim.
ModelSim SE User’s Manual

UM-546 C - Error and warning messages

Model
ModelSim message system

The ModelSim message system helps you identify and troubleshoot problems while using
the application. The messages display in a standard format in the Transcript pane.
Accordingly, you can also access them from a saved transcript file (see "Saving the
transcript file" (GR-16) for more details).

Message format

The format for the messages is:

** <SEVERITY LEVEL>: ([<Tool>[-<Group>]]-<MsgNum>) <Message>

SEVERITY LEVEL may be one of the following:

Tool indicates which ModelSim tool was being executed when the message was generated.
For example tool could be vcom, vdel, vsim, etc.

Group indicates the topic to which the problem is related. For example group could be FLI,
PLI, VCD, etc.

Example

** Error: (vsim-PLI-3071) ./src/19/testfile(77): $fdumplimit : Too few
arguments.

Getting more information

Each message is identified by a unique MsgNum id. You can access additional information
about a message using the unique id and the verror (CR-329) command. For example:

% verror 3071
Message # 3071:
Not enough arguments are being passed to the specified system task or
function.

Changing message severity level

You can change the severity of or suppress notes, warnings, and errors that come from
vcom, vlog, and vsim. You cannot change the severity of or suppress Fatal or Internal
messages.

severity level meaning

Note This is an informational message.

Warning There may be a problem that will affect the
accuracy of your results.

Error The tool cannot complete the operation.

Fatal The tool cannot complete execution.

INTERNAL ERROR This is an unexpected error that should be
reported to support@model.com.
Sim SE User’s Manual

ModelSim message system UM-547
There are two ways to modify the severity of or suppress notes, warnings, and errors:

• Use the -error, -note, -suppress, and -warning arguments to sccom (CR-254), vcom (CR-

311), vlog (CR-358), or vsim (CR-373). See the command descriptions in the ModelSim
Command Reference for details on those arguments.

• Set a permanent default in the [msg_system] section of the modelsim.ini file. See
"Preference variables located in INI files" (UM-524) for more information.
ModelSim SE User’s Manual

UM-548 C - Error and warning messages

Model
Suppressing warning messages

You can suppress some warning messages. For example, you may receive warning
messages about unbound components about which you are not concerned.

Suppressing VCOM warning messages

Use the -nowarn <number> argument to vcom (CR-311) to suppress a specific warning
message. For example:

vcom -nowarn 1

Suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles via the modelsim.ini file (see
"[vcom] VHDL compiler control variables" (UM-527)).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages
8 = lint checks
9 = signal value dependency at elaboration
10 = VHDL93 constructs in VHDL87 code

Suppressing VLOG warning messages

Use the +nowarn<CODE> argument to vlog (CR-358) to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vlog +nowarnDECAY

Suppresses decay warning messages.

Suppressing VSIM warning messages

Use the +nowarn<CODE> argument to vsim (CR-373) to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vsim +nowarnTFMPC

Suppresses warning messages about too few port connections.
Sim SE User’s Manual

Exit codes UM-549
Exit codes

The table below describes exit codes used by ModelSim tools.

Exit code Description

0 Normal (non-error) return

1 Incorrect invocation of tool

2 Previous errors prevent continuing

3 Cannot create a system process (execv, fork, spawn, etc.)

4 Licensing problem

5 Cannot create/open/find/read/write a design library

6 Cannot create/open/find/read/write a design unit

7 Cannot open/read/write/dup a file (open, lseek, write, mmap, munmap,
fopen, fdopen, fread, dup2, etc.)

8 File is corrupted or incorrect type, version, or format of file

9 Memory allocation error

10 General language semantics error

11 General language syntax error

12 Problem during load or elaboration

13 Problem during restore

14 Problem during refresh

15 Communication problem (Cannot create/read/write/close pipe/socket)

16 Version incompatibility

19 License manager not found/unreadable/unexecutable (vlm/mgvlm)

42 Lost license

43 License read/write failure

44 Modeltech daemon license checkout failure #44

45 Modeltech daemon license checkout failure #45

90 Assertion failure (SEVERITY_QUIT)

99 Unexpected error in tool

100 GUI Tcl initialization failure

101 GUI Tk initialization failure
ModelSim SE User’s Manual

UM-550 C - Error and warning messages

Model
102 GUI IncrTk initialization failure

111 X11 display error

202 Interrupt (SIGINT)

204 Illegal instruction (SIGILL)

205 Trace trap (SIGTRAP)

206 Abort (SIGABRT)

208 Floating point exception (SIGFPE)

210 Bus error (SIGBUS)

211 Segmentation violation (SIGSEGV)

213 Write on a pipe with no reader (SIGPIPE)

214 Alarm clock (SIGALRM)

215 Software termination signal from kill (SIGTERM)

216 User-defined signal 1 (SIGUSR1)

217 User-defined signal 2 (SIGUSR2)

218 Child status change (SIGCHLD)

230 Exceeded CPU limit (SIGXCPU)

231 Exceeded file size limit (SIGXFSZ)

Exit code Description
Sim SE User’s Manual

Miscellaneous messages UM-551
Miscellaneous messages

This section describes miscellaneous messages which may be associated with ModelSim.

Compilation of DPI export TFs error

Message text

** Fatal: (vsim-3740) Can't locate a C compiler for compilation of DPI
export tasks/functions.

Meaning

ModelSim was unable to locate a C compiler to compile the DPI exported tasks or functions
in your design.

Suggested action

Make sure that a C compiler is visible from where you are running the simulation.

Empty port name warning

Message text

** WARNING: [8] <path/file_name>:
empty port name in port list.

Meaning

ModelSim reports these warnings if you use the -lint argument to vlog (CR-358). It reports
the warning for any NULL module ports.

Suggested action

If you wish to ignore this warning, do not use the -lint argument.

Lock message

Message text

waiting for lock by user@user. Lockfile is <library_path>/_lock

Meaning

The _lock file is created in a library when you begin a compilation into that library, and it
is removed when the compilation completes. This prevents simultaneous updates to the
library. If a previous compile did not terminate properly, ModelSim may fail to remove the
_lock file.

Suggested action

Manually remove the _lock file after making sure that no one else is actually using that
library.
ModelSim SE User’s Manual

UM-552 C - Error and warning messages

Model
Metavalue detected warning

Message text

Warning: NUMERIC_STD.">": metavalue detected, returning FALSE

Meaning

This warning is an assertion being issued by the IEEE numeric_std package. It indicates
that there is an 'X' in the comparison.

Suggested action

The message does not indicate which comparison is reporting the problem since the
assertion is coming from a standard package. To track the problem, note the time the
warning occurs, restart the simulation, and run to one time unit before the noted time. At
this point, start stepping the simulator until the warning appears. The location of the blue
arrow in a Source window will be pointing at the line following the line with the
comparison.

These messages can be turned off by setting the NumericStdNoWarnings variable to 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

Message text

signal is read by the process but is not in the sensitivity list

Meaning

ModelSim outputs this message when you use the -check_synthesis argument to vcom
(CR-311). It reports the warning for any signal that is read by the process but is not in the
sensitivity list.

Suggested action

There are cases where you may purposely omit signals from the sensitivity list even though
they are read by the process. For example, in a strictly sequential process, you may prefer
to include only the clock and reset in the sensitivity list because it would be a design error
if any other signal triggered the process. In such cases, your only option as of version 5.7
is to not use the -check_synthesis argument.

Tcl Initialization error 2

Message text

Tcl_Init Error 2 : Can't find a usable Init.tcl in the following directories :
./../tcl/tcl8.3 .

Meaning

This message typically occurs when the base file was not included in a Unix installation.
When you install ModelSim, you need to download and install 3 files from the ftp site.
These files are:
Sim SE User’s Manual

Miscellaneous messages UM-553
• modeltech-base.tar.gz

• modeltech-docs.tar.gz

• modeltech-<platform>.exe.gz

If you install only the <platform> file, you will not get the Tcl files that are located in the
base file.

This message could also occur if the file or directory was deleted or corrupted.

Suggested action

Reinstall ModelSim with all three files.
ModelSim SE User’s Manual

UM-554 C - Error and warning messages

Model
Too few port connections

Message text

** Warning (vsim-3017): foo.v(1422): [TFMPC] - Too few port connections.
Expected 2, found 1.
Region: /foo/tb

Meaning

This warning occurs when an instantiation has fewer port connections than the
corresponding module definition. The warning doesn’t necessarily mean anything is
wrong; it is legal in Verilog to have an instantiation that doesn’t connect all of the pins.
However, someone that expects all pins to be connected would like to see such a warning.

Here are some examples of legal instantiations that will and will not cause the warning
message.

Module definition:

module foo (a, b, c, d);

Instantiation that does not connect all pins but will not produce the warning:

foo inst1(e, f, g,); – positional association

foo inst1(.a(e), .b(f), .c(g), .d()); – named association

Instantiation that does not connect all pins but will produce the warning:

foo inst1(e, f, g); – positional association

foo inst1(.a(e), .b(f), .c(g)); – named association

Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Here’s another example:

foo inst1(e, , g, h);

foo inst1(.a(e), .b(), .c(g), .d(h));

Suggested actions

• Check that there is not an extra comma at the end of the port list. (e.g., model(a,b,)). The
extra comma is legal Verilog and implies that there is a third port connection that is
unnamed.

• If you are purposefully leaving pins unconnected, you can disable these messages using
the +nowarnTFMPC argument to vsim.
Sim SE User’s Manual

Miscellaneous messages UM-555
VSIM license lost

Message text

Console output:
Signal 0 caught... Closing vsim vlm child.
vsim is exiting with code 4
FATAL ERROR in license manager

transcript/vsim output:
** Error: VSIM license lost; attempting to re-establish.
Time: 5027 ns Iteration: 2
** Fatal: Unable to kill and restart license process.
Time: 5027 ns Iteration: 2

Meaning

ModelSim queries the license server for a license at regular intervals. Usually these
"License Lost" error messages indicate that network traffic is high, and communication
with the license server times out.

Suggested action

Anything you can do to improve network communication with the license server will
probably solve or decrease the frequency of this problem.

Failed to find libswift entry

Message text

** Error: Failed to find LMC Smartmodel libswift entry in project file.
Fatal: Foreign module requested halt

Meaning

ModelSim could not locate the libswift entry and therefore could not link to the Logic
Modeling library.

Suggested action

Uncomment the appropriate libswift entry in the [lmc] section of the modelsim.ini or
project .mpf file. See "VHDL SmartModel interface" (UM-618) for more information.
ModelSim SE User’s Manual

UM-556 C - Error and warning messages

Model
sccom error messages

This section describes sccom (CR-254) error messages which may be associated with
ModelSim.

Failed to load sc lib error: undefined symbol

Message text

** Error: (vsim-3197) Load of "/home/cmg/newport2_systemc/chip/vhdl/work/
systemc.so" failed: ld.so.1:

/home/icds_nut/modelsim/5.8a/sunos5/vsimk: fatal: relocation error: file

/home/cmg/newport2_systemc/chip/vhdl/work/systemc.so: symbol
_Z28host_respond_to_vhdl_requestPm:

referenced symbol not found.

** Error: (vsim-3676) Could not load shared library /home/cmg/
newport2_systemc/chip/vhdl/work/systemc.so for SystemC module 'host_xtor'.

Meaning

The causes for such an error could be:

• missing symbol definition

• bad link order specified in sccom -link

• multiply defined symbols (see "Multiple symbol definitions" (UM-186)
Sim SE User’s Manual

sccom error messages UM-557
Suggested action

• If the undefined symbol is a C function in your code or a library you are linking with, be
sure that you declared it as an extern "C" function:

extern "C" void myFunc();

• The order in which you place the -link option within the sccom -link command is critical.
Make sure you have used it appropriately. See sccom (CR-254) for syntax and usage
information. See "Misplaced "-link" option" (UM-185) for further explanation of error and
correction.

Multiply defined symbols

Message text

work/sc/gensrc/test_ringbuf.o: In function
`test_ringbuf::clock_generator(void)':

work/sc/gensrc/test_ringbuf.o(.text+0x4): multiple definition of
`test_ringbuf::clock_generator(void)'

work/sc/test_ringbuf.o(.text+0x4): first defined here

Meaning

The most common type of error found during sccom -link operation is the multiple symbol
definition error. This typically arises when the same global symbol is present in more than
one .o file. Several causes are likely:

• A common cause of multiple symbol definitions involves incorrect definition of symbols
in header files. If you have an out-of-line function (one that isn’t preceded by the "inline"
keyword) or a variable defined (i.e., not just referenced or prototyped, but truly defined)
in a .h file, you can't include that .h file in more than one .cpp file.

• Another cause of errors is due to ModelSim’s name association feature. The name
association feature automatically generates .cpp files in the work library. These files
"include" your header files. Thus, while it might appear as though you have included
your header file in only one .cpp file, from the linker’s point of view, it is included in
multiple .cpp files.

Suggested action

Make sure you don’t have any out-of-line functions. Use the "inline" keyword. See
"Multiple symbol definitions" (UM-186).
ModelSim SE User’s Manual

UM-558 C - Error and warning messages

Model
Sim SE User’s Manual

 UM-559
D - Verilog PLI / VPI / DPI

Chapter contents
Introduction UM-560

Registering DPI applications UM-565

Registering VPI applications UM-563
Example UM-563

Registering DPI applications UM-565

DPI use flow UM-566

Compiling and linking C applications for PLI/VPI/DPI UM-568

Compiling and linking C++ applications for PLI/VPI/DPI . . . UM-568

Specifying application files to load UM-580
PLI/VPI file loading UM-580
DPI file loading UM-580
Loading shared objects with global symbol visibility . . . UM-581

PLI example UM-582

VPI example UM-583

DPI example UM-584

The PLI callback reason argument. UM-585

The sizetf callback function UM-587

PLI object handles UM-588

Third party PLI applications UM-589

Support for VHDL objects UM-590

IEEE Std 1364 ACC routines UM-591

IEEE Std 1364 TF routines UM-593

SystemVerilog DPI access routines UM-595

Verilog-XL compatible routines UM-597

64-bit support for PLI UM-598

Using 64-bit ModelSim with 32-bit PLI/VPI/DPI Applications . . UM-598

PLI/VPI tracing UM-599
The purpose of tracing files UM-599
Invoking a trace UM-599
Syntax UM-599
Examples UM-600

Debugging PLI/VPI/DPI application code. UM-601
ModelSim SE User’s Manual

UM-560 D - Verilog PLI / VPI / DPI

Model
Introduction

This appendix describes the ModelSim implementation of the Verilog PLI (Programming
Language Interface), VPI (Verilog Procedural Interface) and SystemVerilog DPI (Direct
Programming Interface). These three interfaces provide a mechanism for defining tasks and
functions that communicate with the simulator through a C procedural interface. There are
many third party applications available that interface to Verilog simulators through the PLI
(see "Third party PLI applications" (UM-589)). In addition, you may write your own PLI/
VPI/DPI applications.

ModelSim Verilog implements the PLI as defined in the IEEE Std 1364, with the exception
of the acc_handle_datapath() routine. We did not implement the acc_handle_datapath()
routine because the information it returns is more appropriate for a static timing analysis
tool.

The VPI is partially implemented as defined in the IEEE Std 1364-2001. The list of
currently supported functionality can be found in the following file:

<install_dir>/modeltech/docs/technotes/Verilog_VPI.note

ModelSim SystemVerilog implements DPI as defined in SystemVerilog 3.1a.

The IEEE Std 1364 is the reference that defines the usage of the PLI/VPI routines, and the
SystemVerilog 3.1a Language Reference Manual (LRM) defines the usage of DPI routines.
This manual describes only the details of using the PLI/VPI/DPI with ModelSim Verilog
and SystemVerilog.
Sim SE User’s Manual

Registering PLI applications UM-561
Registering PLI applications

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSim Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s_tfcell structures. This structure is declared in the
veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTION, or USERREALFUNCTION */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */
p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn misctf; /* miscellaneous reason callback function */
char *tfname;/* name of system task or function */

/* The following fields are ignored by ModelSim Verilog */
int forwref;
char *tfveritool;
char *tferrmessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *namecell_p;
int warning_printed;

} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, which is
called when the system task or function is executed in the Verilog code. The first argument
to the callback functions is the value supplied in the data field (many PLI applications don't
use this field). The type field defines the entry as either a system task (USERTASK) or a
system function that returns either a register (USERFUNCTION) or a real
(USERREALFUNCTION). The tfname field is the system task or function name (it must
begin with $). The remaining fields are not used by ModelSim Verilog.

On loading of a PLI application, the simulator first looks for an init_usertfs function, and
then a veriusertfs array. If init_usertfs is found, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h as follows:

void mti_RegisterUserTF(p_tfcell usertf);
ModelSim SE User’s Manual

UM-562 D - Verilog PLI / VPI / DPI

Model
The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. We recommend that you define your entries in an array, with the last entry set to
0. If the array is named veriusertfs (as is the case for linking to Verilog-XL), then you don't
have to provide an init_usertfs function, and the simulator will automatically register the
entries directly from the array (the last entry must be 0). For example,

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry must be 0 */

};

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:

void init_usertfs()
{

p_tfcell usertf = veriusertfs;
while (usertf->type)

mti_RegisterUserTF(usertf++);
}

It is an error if a PLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see
"Compiling and linking C applications for PLI/VPI/DPI" (UM-568)). The PLI applications
are specified as follows (note that on a Windows platform the file extension would be .dll):

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.
Sim SE User’s Manual

Registering VPI applications UM-563
Registering VPI applications

Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created registration routines must be called
at simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_cb() to register callbacks. The registration routines must be placed in a table
named vlog_startup_routines so that the simulator can find them. The table must be
terminated with a 0 entry.

Example
PLI_INT32 MyFuncCalltf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncCompiletf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncSizetf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyEndOfCompCB(p_cb_data cb_data_p)
{ ... }

PLI_INT32 MyStartOfSimCB(p_cb_data cb_data_p)
{ ... }

void RegisterMySystfs(void)
{

vpiHandle tmpH;
s_cb_data callback;

 s_vpi_systf_data systf_data;

 systf_data.type = vpiSysFunc;
 systf_data.sysfunctype = vpiSizedFunc;
 systf_data.tfname = "$myfunc";
 systf_data.calltf = MyFuncCalltf;
 systf_data.compiletf = MyFuncCompiletf;
 systf_data.sizetf = MyFuncSizetf;
 systf_data.user_data = 0;
 tmpH = vpi_register_systf(&systf_data);

vpi_free_object(tmpH);

 callback.reason = cbEndOfCompile;
 callback.cb_rtn = MyEndOfCompCB;
 callback.user_data = 0;
 tmpH = vpi_register_cb(&callback);

vpi_free_object(tmpH);

callback.reason = cbStartOfSimulation;
 callback.cb_rtn = MyStartOfSimCB;
 callback.user_data = 0;

tmpH = vpi_register_cb(&callback);
vpi_free_object(tmpH);

}

void (*vlog_startup_routines[]) () = {
RegisterMySystfs,

 0 /* last entry must be 0 */
};
ModelSim SE User’s Manual

UM-564 D - Verilog PLI / VPI / DPI

Model
Loading VPI applications into the simulator is the same as described in "Registering DPI
applications" (UM-565).

Using PLI and VPI together

PLI and VPI applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

• If an init_usertfs() function exists, then it is executed and only those system tasks and
functions registered by calls to mti_RegisterUserTF() will be defined.

• If an init_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

• If an init_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functions in the vlog_startup_routines table will be defined.

As a result, when PLI and VPI applications exist in the same application object file, they
must be registered in the same manner. VPI registration functions that would normally be
listed in a vlog_startup_routines table can be called from an init_usertfs() function instead.
Sim SE User’s Manual

Registering DPI applications UM-565
Registering DPI applications

DPI applications do not need to be registered. However, each DPI imported or exported
task or function must be identified using SystemVerilog ‘import “DPI”’ or ‘export
“DPI”’syntax. Examples of the syntax follow:

export “DPI” t1;
task t1(input int i, output int o);
.
.
.
end task

import “DPI” function f1 void (input int i, ouput int o);

Your code must provide imported functions or tasks, compiled with an external compiler.
An imported task must return an int value, "1" indicating that it is returning due to a disable,
or "0" indicating otherwise.

These imported functions or objects may then be loaded as a shared library into the
simulator with either the command line option -sv_lib <lib> or -sv_liblist
<bootstrap_file>. For example,

vlog dut.v
gcc -shared -o imports.so imports.c
vsim -sv_lib imports top -do <do_file>

The -sv_lib option specifies the shared library name, without an extension. A file extension
is added by the tool, as appropriate to your platform. For a list of file extensions accepted
by platform, see "DPI file loading" (UM-580).

You can also use the command line options -sv_root and -sv_liblist to control the process
for loading imported functions and tasks. These options are defined in the SystemVerilog
3.1a LRM.
ModelSim SE User’s Manual

UM-566 D - Verilog PLI / VPI / DPI

Model
DPI use flow

Correct use of ModelSim DPI depends on the flow presented in this section.

Steps in flow

1 Run vlog (CR-358) to generate a dpiheader.h file.

This file defines the interface between C and ModelSim for exported and imported tasks
and functions. Though the dpiheader.h is a user convenience file rather than requirement,
including dpiheader.h in your C code can immediately solve problems caused by an
improperly defined interface. An example command for creating the header file would
be:

vlog -dpiheader <dpiheader>.h

vlog

gcc
C compiler

.v

dpiheader.h

.c

vsim

#include "dpiheader.h"

vlog -dpiheader dpiheader.h

vsim

exportobj.o

vsim -dpiexportobj exportobj.o

.o
mtipli.lib

ld/link
loader/linker

<test>.so
shared object

Step 1 Create header

Step 1.5 Windows only

Step 2 Include header

Step 3

Compile

C code

vsim -sv_lib <test>

compiled
user code

and load/link

Step 4 Simulate
Sim SE User’s Manual

DPI use flow UM-567
For Windows only: Run a preliminary invocation of vsim (CR-373)

Because of limitations with the linker/loader provided on Windows, an step is required.
You must create the exported task/function compiled object file (exportobj.o) by running
a preliminary vsim command, such as:

vsim -dpiexportobj exportobj.o

2 Include the dpiheader.h file in your C code.

ModelSim recommends that any user DPI C code that accesses exported tasks/functions,
or defines imported tasks/functions, will include the dpiheader.h file. This allows the C
compiler to verify the interface between C and ModelSim.

3 Compile the C code into a shared object.

Compile your code, providing any .a or other .o files required.

For Windows: In this step, the object file is bound into the .dll that you created using the
-dpiexportobj argument.

4 Simulate the design.

When simulating, specify the name of the imported DPI C shared object (according to
the SystemVerilog LRM).
ModelSim SE User’s Manual

UM-568 D - Verilog PLI / VPI / DPI

Model
Compiling and linking C applications for PLI/VPI/DPI

The following platform-specific instructions show you how to compile and link your
PLI/VPI/DPI C applications so that they can be loaded by ModelSim. Various native C/
C++ compilers are supported on different platforms. The gcc compiler is supported on all
platforms.

The following PLI/VPI/DPI routines are declared in the include files located in the
ModelSim <install_dir>/modeltech/include directory:

acc_user.h declares the ACC routines

veriuser.h declares the TF routines

vpi_user.h declares the VPI routines

svdpi.h declares DPI routines

The following instructions assume that the PLI, VPI, or DPI application is in a single source
file. For multiple source files, compile each file as specified in the instructions and link all
of the resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared
libraries is the same for all platforms. For information on loading libraries for PLI/VPI see
"PLI/VPI file loading" (UM-580). For DPI loading instructions, see "DPI file loading" (UM-

580).

For all UNIX platforms

If app.so is not in your current directory, you must tell the OS where to search for the shared
object. You can do this one of two ways:

• Add a path before app.so in the command line option or control variable (The path may
include environment variables.)

• Put the path in a UNIX shell environment variable:
LD_LIBRARY_PATH= <library path without filename> (for Solaris/Linux)

or

SHLIB_PATH= <library path without filename> (for HP-UX)

Windows platforms

Microsoft Visual C 4.1 or later

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj \

<install_dir>\modeltech\win32\mtipli.lib -out:app.dll

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.
Sim SE User’s Manual

Compiling and linking C applications for PLI/VPI/DPI UM-569
If you need to run the profiler (see Chapter 12 - Profiling performance and memory use)
on a design that contains PLI/VPI code, add these two switches to the link commands
shown above:

/DEBUG /DEBUGTYPE:COFF

These switches add symbols to the .dll that the profiler can use in its report.

MinGW gcc 3.2.3

gcc -c -I<install_dir>\modeltech\include app.c
gcc -shared -o app.dll app.o -L<install_dir>\modeltech\win32 -lmtipli

ModelSim recommends the use of MinGW gcc compiler rather than the Cygwin gcc
compiler. MinGW gcc is available on the ModelSim FTP site.

For DPI imports

When linking the shared objects, be sure to specify one export option for each DPI imported
task or function in your linking command line. You can use the -isymfile argument from
the vlog (CR-358) command to obtain a complete list of all imported tasks/functions
expected by ModelSim.

As an alternative to specifying one -export option for each imported task or function, you
can make use of the __declspec (dllexport) macro supported by Visual C. You can place
this macro before every DPI import task or function declaration in your C source. All the
marked functions will be available for use by vsim as DPI import tasks and functions.

DPI special flow for exported tasks and functions

Since the Windows platform lacks the necessary runtime linking capabilities, you must
perform an additional manual step in order to prepare shared objects containing calls to
exported SystemVerilog tasks or functions. You need to invoke a special run of vsim (CR-

373). The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates an object file <objname> that contains "glue" code for
exported tasks and functions. You must add that object file to the link line for your .dll,
listed after the other object files. For example, a link line for MinGW would be:

gcc -shared -o app.dll app.o <objname>
-L<install_dir>\modeltech\win32 -lmtipli

and a link line for Visual C would be:

link -dll -export:<init_function> app.obj <objname>\
<install_dir>\modeltech\win32\mtipli.lib -out:app.dll

32-bit Linux platform

If your PLI/VPI/DPI application uses anything from a system library, you will need to
specify that library when you link your PLI/VPI/DPI application. For example, to use the
standard C library, specify ‘-lc’ to the ‘ld’ command.

gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ModelSim SE User’s Manual

UM-570 D - Verilog PLI / VPI / DPI

Model
ld -shared -E -Bsymbolic -o app.so app.o -lc

When using -Bsymbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored. If you are using ModelSim RedHat version 6.0 through 7.1,
you also need to add the -noinhibit-exec switch when you specify -Bsymbolic.

The compiler switch -freg-struct-return must be used when compiling any FLI application
code that contains foreign functions that return real or time values.

64-bit Linux for IA64 platform

64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

gcc compiler (gcc 3.2 or later)

gcc -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your PLI/VPI/
DPI application. For example, to use the system math library libm, specify -lm to the ld
command:

gcc -c -fPIC -I/<install_dir>/modeltech/include math_app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

64-bit Linux for Opteron and Athlon 64 platforms

64-bit Linux is supported on RedHat Linux EWS 3.0 for Opteron and Athlon 64.

gcc compiler (gcc 3.2 or later)

gcc -m64 -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -m elf_x86_64 -shared -Bsymbolic -E --allow-shlib-undefined -o app.so \

app.o

The -m64 and -m elf_x86_64 switches are required to compile for 64-bit operation. To
compile for 32-bit operation, use the -m32 argument instead of -m64 at the gcc command
line. These arguments for 32-bit or 64-bit operation are required only if the desired
operation differs from the default gcc settings.

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your PLI/VPI/
DPI application. For example, to use the system math library libm, specify -lm to the ld
command:

gcc -m64 -c -fPIC -I/<install_dir>/modeltech/include math_app.c
ld -m elf_x86_64 -shared -Bsymbolic -E --allow-shlib-undefined \

-o math_app.so math_app.o -lm

32-bit Solaris platform

If your PLI/VPI/DPI application uses anything from a system library, you will need to
specify that library when you link your PLI/VPI/DPI application. For example, to use the
standard C library, specify ‘-lc’ to the ‘ld’ command.
Sim SE User’s Manual

Compiling and linking C applications for PLI/VPI/DPI UM-571
gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -G -Bsymbolic -o app.so app.o -lc

cc compiler

cc -c -I/<install_dir>/modeltech/include app.c
ld -G -Bsymbolic -o app.so app.o -lc

When using -Bsymbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored.

64-bit Solaris platform

gcc compiler

gcc -c -I<install_dir>/modeltech/include -m64 -fPIC app.c
gcc -shared -o app.so -m64 app.o

This was tested with gcc 3.2.2. You may need to add the location of libgcc_s.so.1 to the
LD_LIBRARY_PATH environment variable.

cc compiler

cc -v -xarch=v9 -O -I<install_dir>/modeltech/include -c app.c
ld -G -Bsymbolic app.o -o app.so

When using -Bsymbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored.

32-bit HP700 platform

A shared library is created by creating object files that contain position-independent code
(use the +z or -fPIC compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PLI/VPI/DPI application uses anything from a system library, you’ll need to specify
that library when you link your PLI/VPI/DPI application. For example, to use the standard
C library, specify ‘-lc’ to the ‘ld’ command.

gcc compiler

gcc -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

cc compiler

cc -c +z +DD32 -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

Note that -fPIC may not work with all versions of gcc.
ModelSim SE User’s Manual

UM-572 D - Verilog PLI / VPI / DPI

Model
64-bit HP platform

cc compiler

cc -v +DD64 -O -I<install_dir>/modeltech/include -c app.c
ld -b -o app.sl app.o -lc

64-bit HP for IA64 platform

cc compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your PLI/VPI/
DPI application. For example, to use the system math library, specify '-lm' to the 'ld'
command:

cc -c +DD64 -I/<install_dir>/modeltech/include math_app.c
ld -b -o math_app.sl math_app.o -lm

32-bit IBM RS/6000 platform

ModelSim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSim's PLI/VPI/DPI symbols, and it must export the PLI or VPI application’s
initialization function or table. ModelSim's export file is located in the ModelSim
installation directory in rs6000/mti_exports.

If your PLI/VPI/DPI application uses anything from a system library, you’ll need to specify
that library when you link your PLI/VPI/DPI application. For example, to use the standard
C library, specify ‘-lc’ to the ‘ld’ command. The resulting object must be marked as shared
reentrant using these gcc or cc compiler commands for AIX 4.x:

gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

cc compiler

cc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs". Alternatively, if there is no init_usertfs function,
then the exported symbol should be "veriusertfs". For the VPI, the exported symbol should
be "vlog_startup_routines". These requirements ensure that the appropriate symbol is
exported, and thus ModelSim can find the symbol when it dynamically loads the shared
object.

When using AIX 4.3 in 32-bit mode, you must add the -DUSE_INTTYPES switch to the
compile command lines. This switch prevents a name conflict that occurs between
inttypes.h and mti.h.
Sim SE User’s Manual

Compiling and linking C applications for PLI/VPI/DPI UM-573
For DPI imports

When linking the shared objects, be sure to specify -bE:<isymfile> option on the link
command line. <isymfile> is the name of the file generated by the-isymfile argument to the
vlog (CR-358) command. Once you have created the <isymfile>, it contains a complete list
of all imported tasks and functions expected by ModelSim.

DPI special flow for exported tasks and functions

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must
perform an additional manual step in order to prepare shared objects containing calls to
exported SystemVerilog tasks or functions shared object file. You need to invoke a special
run of vsim (CR-373). The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname> that contains "glue" code for
exported tasks and functions. You must add that object file to the link line, listed after the
other object files. For example, a link line would be:

ld -o app.so app.o <objname>
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

64-bit IBM RS/6000 platform

Only versions 4.3 and later of AIX support the 64-bit platform. A gcc 64-bit compiler is not
available at this time.

VisualAge cc compiler

cc -c -q64 -I/<install_dir>/modeltech/include app.c
ld -o app.s1 app.o -b64 -bE:app.exports \

-bI:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -lc

For DPI imports

When linking the shared objects, be sure to specify -bE:<isymfile> option on the link
command line. <isymfile> is the name of the file generated by the-isymfile argument to the
vlog (CR-358) command. Once you have created the <isymfile>, it contains a complete list
of all imported tasks and functions expected by ModelSim.

DPI special flow for exported tasks and functions

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must
perform an additional manual step in order to prepare shared objects containing calls to
exported SystemVerilog tasks or functions shared object file. You need to invoke a special
run of vsim (CR-373). The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname> that contains "glue" code for
exported tasks and functions. You must add that object file to the link line, listed after the
other object files. For example, a link line would be:

ld -o app.dll app.o <objname>
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc
ModelSim SE User’s Manual

UM-574 D - Verilog PLI / VPI / DPI

Model
Compiling and linking C++ applications for PLI/VPI/DPI

ModelSim does not have direct support for any language other than standard C; however,
C++ code can be loaded and executed under certain conditions.

Since ModelSim's PLI/VPI/DPI functions have a standard C prototype, you must prevent
the C++ compiler from mangling the PLI/VPI/DPI function names. This can be
accomplished by using the following type of extern:

extern "C"
{

<PLI/VPI/DPI application function prototypes>
}

The header files veriuser.h, acc_user.h, and vpi_user.h, svdpi.h already include this type of
extern. You must also put the PLI/VPI/DPI shared library entry point (veriusertfs,
init_usertfs, or vlog_startup_routines) inside of this type of extern.

The following platform-specific instructions show you how to compile and link your
PLI/VPI/DPI C++ applications so that they can be loaded by ModelSim.

Although compilation and simulation switches are platform-specific, loading shared
libraries is the same for all platforms. For information on loading libraries, see "DPI file
loading" (UM-580).

For PLI/VPI only

If app.so is not in your current directory you must tell Solaris where to search for the shared
object. You can do this one of two ways:

• Add a path before app.so in the foreign attribute specification. (The path may include
environment variables.)

• Put the path in a UNIX shell environment variable:
LD_LIBRARY_PATH= <library path without filename>

Windows platforms

Microsoft Visual C++ 4.1 or later

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj \

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.
Sim SE User’s Manual

Compiling and linking C++ applications for PLI/VPI/DPI UM-575
If you need to run the profiler (see Chapter 12 - Profiling performance and memory use)
on a design that contains PLI/VPI code, add these two switches to the link command shown
above:

/DEBUG /DEBUGTYPE:COFF

These switches add symbols to the .dll that the profiler can use in its report.

MinGW C++ version 3.2.3

g++ -c -I<install_dir>\modeltech\include app.cpp
g++ -shared -o app.dll app.o -L<install_dir>\modeltech\win32 -lmtipli

ModelSim recommends the use of MinGW gcc compiler rather than the Cygwin gcc
compiler. MinGW gcc is available on the ModelSim FTP site.

For DPI imports

When linking the shared objects, be sure to specify one -export option for each DPI
imported task or function in your linking command line. You can use Verilog’s -isymfile
option to obtain a complete list of all imported tasks and functions expected by ModelSim.

DPI special flow for exported tasks and functions

Since the Windows platform lacks the necessary runtime linking complexity, you must
perform an additional manual step in order to compile the HDL source files into the shared
object file. You need to invoke a special run of vsim. The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname> that contains "glue" code for
exported tasks and functions. You must add that object file to the link line, listed after the
other object files. For example, if the object name was dpi1, the link line for MinGW would
be:

g++ -shared -o app.dll app.o <objname>
-L<install_dir>\modeltech\win32 -lmtipli

32-bit Linux platform

GNU C++ version 2.95.3 or later

g++ -c -fPIC -I<install_dir>/modeltech/include app.cpp
g++ -shared -fPIC -o app.so app.o
ModelSim SE User’s Manual

UM-576 D - Verilog PLI / VPI / DPI

Model
64-bit Linux for IA64 platform

64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

GNU C++ compiler version gcc 3.2 or later

g++ -c -fPIC -I/<install_dir>/modeltech/include app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an additional
system library, you will need to specify that library when you link your PLI/VPI
application. For example, to use the system math library libm, specify '-lm' to the 'ld'
command:

g++ -c -fPIC -I/<install_dir>/modeltech/include math_app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

64-bit Linux for Opteron and Athlon 64 platforms

64-bit Linux is supported on RedHat Linux EWS 3.0 for Opteron and Athlon 64.

GNU C++ compiler version gcc 3.2 or later

For 64-bit operation, on a default 32-bit gcc compile:

g++ -m64 -c -fPIC -I/<install_dir>/modeltech/include app.cpp
ld -m elf_x86_64 -shared -Bsymbolic -E --allow-shlib-undefined -o app.so

app.o

The -m64 and -m elf_x86_64 switches are required to compile for 64-bit operation. To
compile for 32-bit operation, use the -m32 argument instead of -m64 at the gcc command
line. These arguments for 32-bit or 64-bit operation are required only if the desired
operation differs from the default gcc settings.

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your PLI/VPI/
DPI application. For example, to use the system math library libm, specify -lm to the ld
command:

g++ -c -fPIC -I/<install_dir>/modeltech/include math_app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

32-bit Solaris platform

If your PLI/VPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VPI application. For example, to use the standard C
library, specify ‘-lc’ to the ‘ld’ command.

GNU C++ compiler version gcc 3.2 or later

g++ -c -I/<install_dir>/modeltech/include app.cpp
ld -G -Bsymbolic -o app.so app.o -lc

Sun Forte C++ compiler

cc -c -I/<install_dir>/modeltech/include app.cpp
ld -G -Bsymbolic -o app.so app.o -lc
Sim SE User’s Manual

Compiling and linking C++ applications for PLI/VPI/DPI UM-577
When using -Bsymbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored.

64-bit Solaris platform

GNU C++ compiler version gcc 3.2 or later

g++ -c -I<install_dir>/modeltech/include -m64 -fPIC app.cpp
g++ -shared -o app.so -m64 app.o

This was tested with gcc 3.2.2. You may need to add the location of libgcc_s.so.1 to the
LD_LIBRARY_PATH environment variable.

cc compiler

cc -v -xarch=v9 -O -I<install_dir>/modeltech/include -c app.cpp
ld -G -Bsymbolic app.o -o app.so

When using -Bsymbolic with ld, all symbols are first resolved within the shared library at
link time. This will result in a list of undefined symbols. This is only a warning for shared
libraries and can be ignored.

32-bit HP700 platform

A shared library is created by creating object files that contain position-independent code
(use the +z or -fPIC compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command.

GNU C++ compiler

g++ -c -fPIC -I/<install_dir>/modeltech/include app.cpp
ld -b -o app.sl app.o -lc

cc compiler

cc -c +z +DD32 -I/<install_dir>/modeltech/include app.cpp
ld -b -o app.sl app.o -lc

Note that -fPIC may not work with all versions of gcc.

64-bit HP platform

cc compiler

cc -v +DD64 -O -I<install_dir>/modeltech/include -c app.cpp
ld -b -o app.sl app.o -lc
ModelSim SE User’s Manual

UM-578 D - Verilog PLI / VPI / DPI

Model
64-bit HP for IA64 platform

HP ANSI C++ compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -I/<install_dir>/modeltech/include app.cpp
ld -b -o app.sl app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an additional
system library, you will need to specify that library when you link your PLI/VPI
application. For example, to use the system math library, specify '-lm' to the 'ld' command:

cc -c +DD64 -I/<install_dir>/modeltech/include math_app.c
ld -b -o math_app.sl math_app.o -lm

32-bit IBM RS/6000 platform

ModelSim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSim's PLI/VPI symbols, and it must export the PLI or VPI application’s
initialization function or table. ModelSim's export file is located in the ModelSim
installation directory in rs6000/mti_exports.

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command. The resulting object must be marked as shared reentrant
using these gcc or cc compiler commands for AIX 4.x:

GNU C++ compiler version gcc 3.2 or later

g++ -c -I/<install_dir>/modeltech/include app.cpp
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

VisualAge C++ compiler

cc -c -I/<install_dir>/modeltech/include app.cpp
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs". Alternatively, if there is no init_usertfs function,
then the exported symbol should be "veriusertfs". For the VPI, the exported symbol should
be "vlog_startup_routines". These requirements ensure that the appropriate symbol is
exported, and thus ModelSim can find the symbol when it dynamically loads the shared
object.

When using AIX 4.3 in 32-bit mode, you must add the -DUSE_INTTYPES switch to the
compile command lines. This switch prevents a name conflict that occurs between
inttypes.h and mti.h.

For DPI imports

When linking the shared objects, be sure to specify -bE:<isymfile> option on the link
command line. <isymfile> is the name of the file generated by the-isymfile argument to the
vlog (CR-358) command. Once you have created the <isymfile>, it contains a complete list
of all imported tasks and functions expected by ModelSim.
Sim SE User’s Manual

Compiling and linking C++ applications for PLI/VPI/DPI UM-579
DPI special flow for exported tasks and functions

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must
perform an additional manual step in order to prepare shared objects containing calls to
exported SystemVerilog tasks or functions shared object file. You need to invoke a special
run of vsim (CR-373). The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname> that contains "glue" code for
exported tasks and functions. You must add that object file to the link line, listed after the
other object files. For example, a link line would be:

ld -o app.dll app.o <objname>
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

64-bit IBM RS/6000 platform

Only version 4.3 and later of AIX supports the 64-bit platform. A gcc 64-bit compiler is not
available at this time.

VisualAge C++ compiler

cc -c -q64 -I/<install_dir>/modeltech/include app.cpp
ld -o app.s1 app.o -b64 -bE:app.exports \

-bI:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -lc

For DPI imports

When linking the shared objects, be sure to specify -bE:<isymfile> option on the link
command line. <isymfile> is the name of the file generated by the-isymfile argument to the
vlog (CR-358) command. Once you have created the <isymfile>, it contains a complete list
of all imported tasks and functions expected by ModelSim.

DPI special flow for exported tasks and functions

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must
perform an additional manual step in order to prepare shared objects containing calls to
exported SystemVerilog tasks or functions shared object file. You need to invoke a special
run of vsim (CR-373). The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname> that contains "glue" code for
exported tasks and functions. You must add that object file to the link line, listed after the
other object files. For example, a link line would be:

ld -o app.so app.o <objname>
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc
ModelSim SE User’s Manual

UM-580 D - Verilog PLI / VPI / DPI

Model
Specifying application files to load

PLI and VPI file loading is identical. DPI file loading uses switches to the vsim command.

PLI/VPI file loading

The PLI/VPI applications are specified as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI/VPI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.

See also Appendix B - ModelSim variables for more information on the modelsim.ini file.

DPI file loading

DPI applications are specified to vsim (CR-373) using the following SystemVerilog
arguments:

When the simulator finds an imported task or function, it searches for the symbol in the
collection of shared objects specified using these arguments.

For example, you can specify the DPI application as follows:

vsim -sv_lib dpiapp1 -sv_lib dpiapp2 -sv_lib dpiappn

It is a mistake to specify DPI import tasks and functions (tf) inside PLI/VPI shared objects.
However, a DPI import tf can make calls to PLI/VPI C code, providing that vsim -gblso
was used to mark the PLI/VPI shared object with global symbol visibility. See "Loading
shared objects with global symbol visibility" (UM-581).

Note: On Windows platforms, the file names shown above should end with .dll rather
than .so.

-sv_lib <name> specifies a library name to be searched and used. No filename
extensions must be specified. (The extensions ModelSim expects are:
.sl for HP, .dll for Win32, .so for all other platforms.)

-sv_root <name> specifies a new prefix for shared objects as specified by -sv_lib

-sv_liblist specifies a “bootstrap file” to use
Sim SE User’s Manual

Specifying application files to load UM-581
Loading shared objects with global symbol visibility

On Unix platforms you can load shared objects such that all symbols in the object have
global visibility. To do this, use the -gblso argument to vsim when you load your PLI/VPI
application. For example:

vsim -pli obj1.so -pli obj2.so -gblso obj1.so

The -gblso argument works in conjunction with the GlobalSharedObjectList variable in the
modelsim.ini file. This variable allows user C code in other shared objects to refer to
symbols in a shared object that has been marked as global. All shared objects marked as
global are loaded by the simulator earlier than any non-global shared objects.
ModelSim SE User’s Manual

UM-582 D - Verilog PLI / VPI / DPI

Model
PLI example

The following example is a trivial, but complete PLI application.

hello.c:

#include "veriuser.h"
static PLI_INT32 hello()
{

io_printf("Hi there\n");
return 0;

}
s_tfcell veriusertfs[] = {

{usertask, 0, 0, 0, hello, 0, "$hello"},
{0} /* last entry must be 0 */

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the PLI code for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hi there
VSIM 2> quit
Sim SE User’s Manual

VPI example UM-583
VPI example

The following example is a trivial, but complete VPI application. A general VPI example
can be found in <install_dir>/modeltech/examples/vpi.

hello.c:

#include "vpi_user.h"
static PLI_INT32 hello(PLI_BYTE8 * param)
{

vpi_printf("Hello world!\n");
return 0;

}

void RegisterMyTfs(void)
{

s_vpi_systf_data systf_data;
vpiHandle systf_handle;
systf_data.type = vpiSysTask;
systf_data.sysfunctype = vpiSysTask;
systf_data.tfname = "$hello";
systf_data.calltf = hello;
systf_data.compiletf = 0;
systf_data.sizetf = 0;
systf_data.user_data = 0;
systf_handle = vpi_register_systf(&systf_data);
vpi_free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
RegisterMyTfs,
0

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the VPI code for the Solaris operating system:

% gcc -c -I<install_dir>/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hello world!
VSIM 2> quit
ModelSim SE User’s Manual

UM-584 D - Verilog PLI / VPI / DPI

Model
DPI example

The following example is a trivial, but complete DPI application. For win32 and RS6000
platforms, one additional step is required along with some new arguments. For the latest
detailed instructions for compiling and simulating DPI imported and exported tasks and
functions, see the modeltech/examples/dpi directory. There you will find examples with a
subdirectory for each platform that contains the platform specific commands and
arguments.

hello_c.c:

#include "svdpi.h"
#include "dpiheader.h"
int c_task(int i, int *o)
{

printf("Hello from c_task()\n");
verilog_task(i, o); /* Call back into Verilog */
*o = i;
return(0); /* Return success (required by tasks) */

}

hello.v:

module hello_top;
int ret;
export "DPI" task verilog_task;
task verilog_task(input int i, output int o);

#10;
$display("Hello from verilog_task()");

endtask
import "DPI" context task c_task(input int i, output int o);

initial
begin

c_task(1, ret); // Call the c task named 'c_task()'
end

endmodule

Compile the Verilog code:

% vlib work
% vlog -sv -dpiheader dpiheader.h hello.v

Compile the DPI code for the Solaris operating system:

% gcc -c -g -I<install_dir>/modeltech/include hello_c.c
% ld -G -o hello_c.so hello_c.o

Simulate the design:

% vsim -c -sv_lib hello_c hello_top
Loading work.hello_c
Loading ./hello_c.so
VSIM 1> run -all
Hello from c_task()
Hello from verilog_task()
VSIM 2> quit
Sim SE User’s Manual

The PLI callback reason argument UM-585
The PLI callback reason argument

The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See IEEE Std 1364 for a
description of the reason constants. The following details relate to ModelSim Verilog, and
may not be obvious in the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endofcompile

For the completion of loading the design.

reason_finish

For the execution of the $finish system task or the quit command.

reason_startofsave

For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its data with calls to tf_write_save() until it is called with reason_save.

reason_save

For the execution of the checkpoint command. This is when the PLI application must
save its state with calls to tf_write_save().

reason_startofrestart

For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restore its state with calls to tf_read_restart() until it is called with
reason_restart. The reason_startofrestart value is passed only for a restore command, and
not in the case that the simulator is invoked with -restore.

reason_restart

For the execution of the restore command. This is when the PLI application must restore
its state with calls to tf_read_restart().

reason_reset

For the execution of the restart command. This is when the PLI application should free
its memory and reset its state. We recommend that all PLI applications reset their internal
state during a restart as the shared library containing the PLI code might not be reloaded.
(See the -keeploaded (CR-376) and -keeploadedrestart (CR-376) arguments to
vsim for related information.)

reason_endofreset

For the completion of the restart command, after the simulation state has been reset but
before the design has been reloaded.

reason_interactive

For the execution of the $stop system task or any other time the simulation is interrupted
and waiting for user input.

reason_scope

For the execution of the environment command or selecting a scope in the structure
window. Also for the call to acc_set_interactive_scope() if the callback_flag argument is
non-zero.

reason_paramvc

For the change of value on the system task or function argument.
ModelSim SE User’s Manual

UM-586 D - Verilog PLI / VPI / DPI

Model
reason_synch

For the end of time step event scheduled by tf_synchronize().

reason_rosynch

For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate

For the simulation event scheduled by tf_setdelay().

reason_paramdrc

Not supported in ModelSim Verilog.

reason_force

Not supported in ModelSim Verilog.

reason_release

Not supported in ModelSim Verilog.

reason_disable

Not supported in ModelSim Verilog.
Sim SE User’s Manual

The sizetf callback function UM-587
The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

• If you omit the sizetf function, then a return width of 32 is assumed.

• The sizetf function should return 0 if the system function return value is of Verilog type
"real".

• The sizetf function should return -32 if the system function return value is of Verilog type
"integer".
ModelSim SE User’s Manual

UM-588 D - Verilog PLI / VPI / DPI

Model
PLI object handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routine is called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() is called. The following object types are created on demand in ModelSim
Verilog:

accOperator (acc_handle_condition)
accWirePath (acc_handle_path)
accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and

acc_next_load)
accPathTerminal (acc_next_input and acc_next_output)
accTchkTerminal (acc_handle_tchkarg1 and acc_handle_tchkarg2)
accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)

If your PLI application uses these types of objects, then it is important to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects,
do not call acc_close() while these callbacks are in effect.
Sim SE User’s Manual

Third party PLI applications UM-589
Third party PLI applications

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelines are for preparing a Verilog-XL PLI application to work with ModelSim Verilog.

Generally, a Verilog-XL PLI application comes with a collection of object files and a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering DPI applications" (UM-565). To prepare the application for ModelSim
Verilog, you must compile the veriuser.c file and link it to the object files to create a
dynamically loadable object (see "Compiling and linking C applications for PLI/VPI/DPI"
(UM-568)). For example, if you have a veriuser.c file and a library archive libapp.a file that
contains the application's object files, then the following commands should be used to
create a dynamically loadable object for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include veriuser.c
% ld -G -o app.sl veriuser.o libapp.a

The PLI application is now ready to be run with ModelSim Verilog. All that's left is to
specify the resulting object file to the simulator for loading using the Veriuser entry in the
modesim.ini file, the -pli simulator argument, or the PLIOBJS environment variable (see
"Registering DPI applications" (UM-565)).

Note: On the HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler argument. Since, the object files supplied for Verilog-XL
may be compiled for static linking, you may not be able to use the object files to create
a dynamically loadable object for ModelSim Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent
code.
ModelSim SE User’s Manual

UM-590 D - Verilog PLI / VPI / DPI

Model
Support for VHDL objects

The PLI ACC routines also provide limited support for VHDL objects in either an all
VHDL design or a mixed VHDL/Verilog design. The following table lists the VHDL
objects for which handles may be obtained and their type and fulltype constants:

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objects that define levels of hierarchy in
the structure window. Currently, the PLI ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.
However, some of these objects can be manipulated through the ModelSim VHDL foreign
interface (mti_* routines). See the FLI Reference Manual for more information.

Type Fulltype Description

accArchitecture accArchitecture instantiation of an architecture

accArchitecture accEntityVitalLevel0 instantiation of an architecture whose entity is marked
with the attribute VITAL_Level0

accArchitecture accArchVitalLevel0 instantiation of an architecture which is marked with the
attribute VITAL_Level0

accArchitecture accArchVitalLevel1 instantiation of an architecture which is marked with the
attribute VITAL_Level1

accArchitecture accForeignArch instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture accForeignArchMixed instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()

accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration
Sim SE User’s Manual

IEEE Std 1364 ACC routines UM-591
IEEE Std 1364 ACC routines

ModelSim Verilog supports the following ACC routines, described in detail in the IEEE
Std 1364.

cc_append_delays

cc_append_pulsere

cc_close

cc_collect

cc_compare_handles

cc_configure

cc_count

cc_fetch_argc

cc_fetch_argv

cc_fetch_attribute

cc_fetch_attribute_int

cc_fetch_attribute_str

cc_fetch_defname

cc_fetch_delay_mode

cc_fetch_delays

cc_fetch_direction

cc_fetch_edge

cc_fetch_fullname

cc_fetch_fulltype

cc_fetch_index

cc_fetch_location

acc_fetch_name

acc_fetch_paramtype

acc_fetch_paramval

acc_fetch_polarity

acc_fetch_precision

acc_fetch_pulsere

acc_fetch_range

acc_fetch_size

acc_fetch_tfarg

acc_fetch_itfarg

acc_fetch_tfarg_int

acc_fetch_itfarg_int

acc_fetch_tfarg_str

acc_fetch_itfarg_str

acc_fetch_timescale_info

acc_fetch_type

acc_fetch_type_str

acc_fetch_value

acc_free

acc_handle_by_name

acc_handle_calling_mod_m

acc_handle_condition

acc_handle_conn

acc_handle_hiconn

acc_handle_interactive_scop
e

acc_handle_loconn

acc_handle_modpath

acc_handle_notifier

acc_handle_object

acc_handle_parent

acc_handle_path

acc_handle_pathin

acc_handle_pathout

acc_handle_port

acc_handle_scope

acc_handle_simulated_net

acc_handle_tchk

acc_handle_tchkarg1

acc_handle_tchkarg2

acc_handle_terminal

acc_handle_tfarg

acc_handle_itfarg
ModelSim SE User’s Manual

UM-592 D - Verilog PLI / VPI / DPI

Model
acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string value of a
parameter. Because of this, the function acc_fetch_paramval_str() has been added to the
PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It functions in a
manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.

acc_handle_tfinst

acc_initialize

acc_next

acc_next_bit

acc_next_cell

acc_next_cell_load

acc_next_child

acc_next_driver

acc_next_hiconn

acc_next_input

acc_next_load

acc_next_loconn

acc_next_modpath

acc_next_net

acc_next_output

acc_next_parameter

acc_next_port

acc_next_portout

acc_next_primitive

acc_next_scope

acc_next_specparam

acc_next_tchk

acc_next_terminal

acc_next_topmod

acc_object_in_typelist

acc_object_of_type

acc_product_type

acc_product_version

acc_release_object

acc_replace_delays

acc_replace_pulsere

acc_reset_buffer

acc_set_interactive_scope

acc_set_pulsere

acc_set_scope

acc_set_value

acc_vcl_add

acc_vcl_delete

acc_version
Sim SE User’s Manual

IEEE Std 1364 TF routines UM-593
IEEE Std 1364 TF routines

ModelSim Verilog supports the following TF (task and function) routines, described in
detail in the IEEE Std 1364.

io_mcdprintf

io_printf

mc_scan_plusargs

tf_add_long

tf_asynchoff

tf_iasynchoff

tf_asynchon

tf_iasynchon

tf_clearalldelays

tf_iclearalldelays

tf_compare_long

tf_copypvc_flag

tf_icopypvc_flag

tf_divide_long

tf_dofinish

tf_dostop

tf_error

tf_evaluatep

tf_ievaluatep

tf_exprinfo

tf_iexprinfo

tf_getcstringp

tf_igetcstringp

tf_getinstance

tf_getlongp

tf_igetlongp

tf_getlongtime

tf_igetlongtime

tf_getnextlongtime

tf_getp

tf_igetp

tf_getpchange

tf_igetpchange

tf_getrealp

tf_igetrealp

tf_getrealtime

tf_igetrealtime

tf_gettime

tf_igettime

tf_gettimeprecision

tf_igettimeprecision

tf_gettimeunit

tf_igettimeunit

tf_getworkarea

tf_igetworkarea

tf_long_to_real

tf_longtime_tostr

tf_message

tf_mipname

tf_imipname

tf_movepvc_flag

tf_imovepvc_flag

tf_multiply_long

tf_nodeinfo

tf_inodeinfo

tf_nump

tf_inump

tf_propagatep

tf_ipropagatep

tf_putlongp

tf_iputlongp

tf_putp

tf_iputp

tf_putrealp

tf_iputrealp

tf_read_restart

tf_real_to_long

tf_rosynchronize

tf_irosynchronize
ModelSim SE User’s Manual

UM-594 D - Verilog PLI / VPI / DPI

Model
tf_scale_longdelay

tf_scale_realdelay

tf_setdelay

tf_isetdelay

tf_setlongdelay

tf_isetlongdelay

tf_setrealdelay

tf_isetrealdelay

tf_setworkarea

tf_isetworkarea

tf_sizep

tf_isizep

tf_spname

tf_ispname

tf_strdelputp

tf_istrdelputp

tf_strgetp

tf_istrgetp

tf_strgettime

tf_strlongdelputp

tf_istrlongdelputp

tf_strrealdelputp

tf_istrrealdelputp

tf_subtract_long

tf_synchronize

tf_isynchronize

tf_testpvc_flag

tf_itestpvc_flag

tf_text

tf_typep

tf_itypep

tf_unscale_longdelay

tf_unscale_realdelay

tf_warning

tf_write_save
Sim SE User’s Manual

SystemVerilog DPI access routines UM-595
SystemVerilog DPI access routines

ModelSim SystemVerilog supports the following routines, described in detail in the
SystemVerilog 3.1a LRM.

svSizeOfBitPackedArr

svSizeOfLogicPackedArr

svPutBitVec32

svPutLogicVec32

svGetBitVec32

svGetLogicVec32

svGetSelectBit

svGetSelectLogic

svPutSelectBit

svPutSelectLogic

svGetPartSelectBit

svGetBits

svGet32Bits

svGet64Bits

svGetPartSelectLogic

svPutPartSelectBit

svPutPartSelectLogic

svLeft

svRight

svLow

svHigh

svIncrement

svLength

svDimensions

svGetArrayPtr

svSizeOfArray

svGetArrElemPtr

svGetArrElemPtr1

svGetArrElemPtr2

svGetArrElemPtr3

svPutBitArrElemVec32

svPutBitArrElem1Vec32

svPutBitArrElem2Vec32

svPutBitArrElem3Vec32

svPutLogicArrElemVec32

svPutLogicArrElem1Vec32

svPutLogicArrElem2Vec32

svPutLogicArrElem3Vec32

svGetBitArrElemVec32

svGetBitArrElem1Vec32

svGetBitArrElem2Vec32

svGetBitArrElem3Vec32

svGetLogicArrElemVec32

svGetLogicArrElem1Vec32

svGetLogicArrElem2Vec32

svGetLogicArrElem3Vec32

svGetBitArrElem

svGetBitArrElem1

svGetBitArrElem2

svGetBitArrElem3

svGetLogicArrElem

svGetLogicArrElem1

svGetLogicArrElem2

svGetLogicArrElem3

svPutLogicArrElem

svPutLogicArrElem1

svPutLogicArrElem2

svPutLogicArrElem3

svPutBitArrElem

svPutBitArrElem1

svPutBitArrElem2

svPutBitArrElem3

svScope svGetScope

svScope svSetScope

svGetNameFromScope

svGetScopeFromName
ModelSim SE User’s Manual

UM-596 D - Verilog PLI / VPI / DPI

Model
svPutUserData

svGetUserData

svGetCallerInfosv

IsDisabledState

svAckDisabledState
Sim SE User’s Manual

Verilog-XL compatible routines UM-597
Verilog-XL compatible routines

The following PLI routines are not defined in IEEE Std 1364, but ModelSim Verilog
provides them for compatibility with Verilog-XL.

char *acc_decompile_exp(handle condition)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained from the acc_handle_condition
routine. The value returned by acc_decompile_exp is the string representation of the
condition expression.

char *tf_dumpfilename(void)

This routine returns the name of the VCD file.

void tf_dumpflush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsimtime(int *aof_hightime)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof_hightime argument.
ModelSim SE User’s Manual

UM-598 D - Verilog PLI / VPI / DPI

Model
Using 64-bit ModelSim with 32-bit PLI/VPI/DPI Applications

If you have 32-bit applications and wish to use 64-bit ModelSim, you will need to port your
code to 64 bits by moving from the ILP32 data model to the LP64 data model. We strongly
recommend that you consult the 64-bit porting guides for Sun and HP.

64-bit support for PLI

The PLI function acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It
functions in a manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.
Sim SE User’s Manual

PLI/VPI tracing UM-599
PLI/VPI tracing

The foreign interface tracing feature is available for tracing PLI and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of the logfile is to aid you in debugging PLI or VPI code. The primary purpose
of the replay facility is to send the replay files to MTI support for debugging co-simulation
problems, or debugging PLI/VPI problems for which it is impractical to send the PLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

To invoke the trace, call vsim (CR-373) with the -trace_foreign argument:

Syntax

vsim
-trace_foreign <action> [-tag <name>]

Arguments

<action>

Specifies one of the following actions:

-tag <name>

Used to give distinct file names for multiple traces. Optional.

Value Action Result

1 create log only writes a local file called
"mti_trace_<tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay
ModelSim SE User’s Manual

UM-600 D - Verilog PLI / VPI / DPI

Model
Examples

vsim -trace_foreign 1 mydesign

Creates a logfile.

vsim -trace_foreign 3 mydesign

Creates both a logfile and a set of replay files.

vsim -trace_foreign 1 -tag 2 mydesign

Creates a logfile with a tag of "2".

The tracing operations will provide tracing during all user foreign code-calls, including
PLI/VPI user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog
VCL callbacks.
Sim SE User’s Manual

PLI/VPI tracing UM-601
Debugging PLI/VPI/DPI application code

ModelSim Versions 5.7 and later offer the optional C Debug feature. This tool allows you
to interactively debug SystemC/C/C++ source code with the open-source gdb debugger.
See Chapter 16 - C Debug for details. If you don’t have access to C Debug, continue
reading for instructions on how to attach to an external C debugger.

In order to debug your PLI/VPI/DPI application code in a debugger, you must first:

1 Compile the application code with debugging information (using the -g option) and
without optimizations (for example, don’t use the -O option).

2 Load vsim into a debugger.

Even though vsim is stripped, most debuggers will still execute it. You can invoke the
debugger directly on vsimk, the simulation kernal where your application code is loaded
(for example, "ddd `which vsimk`"), or you can attach the debugger to an already
running vsim process. In the second case, you must attach to the PID for vsimk, and you
must specify the full path to the vsimk executable (for example, "gdb $MTI_HOME/
sunos5/vsimk 1234").

On Solaris, AIX, and Linux systems you can use either gdb or ddd. On HP-UX systems
you can use the wdb debugger from HP. You will need version 1.2 or later.

3 Set an entry point using breakpoint.

Since initially the debugger recognizes only vsim's PLI/VPI/DPI function symbols,
when invoking the debugger directly on vsim you need to place a breakpoint in the first
PLI/VPI/DPI function that is called by your application code. An easy way to set an entry
point is to put a call to acc_product_version() as the first executable statement in your
application code. Then, after vsim has been loaded into the debugger, set a breakpoint in
this function. Once you have set the breakpoint, run vsim with the usual arguments.

When the breakpoint is reached, the shared library containing your application code has
been loaded.

4 In some debuggers, you must use the share command to load the application's symbols.

At this point all of the application's symbols should be visible. You can now set breakpoints
in and single step through your application code.

HP-UX specific warnings

On HP-UX you might see some warning messages that vsim does not have debugging
information available. This is normal. If you are using Exceed to access an HP machine
from Windows NT, it is recommended that you run vsim in command line or batch mode
because your NT machine may hang if you run vsim in GUI mode. Click on the "go"
button, or use F5 or the go command to execute vsim in wdb.

You might also see a warning about not finding "__dld_flags" in the object file. This
warning can be ignored. You should see a list of libraries loaded into the debugger. It
should include the library for your PLI/VPI/DPI application. Alternatively, you can use
share to load only a single library.
ModelSim SE User’s Manual

UM-602 D - Verilog PLI / VPI / DPI

Model
Sim SE User’s Manual

 UM-603
E - ModelSim shortcuts

Appendix contents
Command shortcuts UM-603

Command history shortcuts UM-603

Main and Source window mouse and keyboard shortcuts UM-605

List window keyboard shortcuts UM-608

Wave window mouse and keyboard shortcuts UM-609

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSim GUI.

Command shortcuts

• You may abbreviate command syntax, but there’s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
ModelSim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

!! repeats the last command
ModelSim SE User’s Manual

UM-604 E - ModelSim shortcuts

Model
!n repeats command number n; n is the VSIM prompt number (e.g.,
for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)

Shortcut Description
Sim SE User’s Manual

Main and Source window mouse and keyboard shortcuts UM-605
Main and Source window mouse and keyboard shortcuts

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing the file displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSim
to open the Notepad editor).

Mouse - UNIX Mouse - Windows Result

< left-button - click > move the insertion cursor

< left-button - press > + drag select

< shift - left-button - press > extend selection

< left-button - double-click > select word

< left-button - double-click > + drag select word + word

< control - left-button - click > move insertion cursor without
changing the selection

< left-button - click > on previous ModelSim or VSIM prompt copy and paste previous command
string to current prompt

< middle-button - click > none paste clipboard

< middle-button - press > + drag none scroll the window

Keystrokes - UNIX Keystrokes - Windows Result

< left | right arrow > move cursor left | right one character

< control > < left | right arrow > move cursor left | right one word

< shift > < left | right | up | down arrow > extend selection of text

< control > < shift > < left | right arrow > extend selection of text by word

< up | down arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > moves cursor up | down one paragraph

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< backspace >, < control-h > < backspace > delete character to the left

< delete >, < control-d > < delete > delete character to the right

none esc cancel
ModelSim SE User’s Manual

UM-606 E - ModelSim shortcuts

Model
< alt > activate or inactivate menu bar mode

< alt > < F4 > close active window

< control - a >, < home > < home > move cursor to the beginning of the line

< control - b > move cursor left

< control - d > delete character to the right

< control - e >, < end > < end > move cursor to the end of the line

< control - f > <right arrow> move cursor right one character

< control - k > delete to the end of line

< control - n > move cursor one line down (Source window
only under Windows)

< control - o > none insert a newline character at the cursor

< control - p > move cursor one line up (Source window only
under Windows)

< control - s > < control - f > find

< F3 > find next

< control - t > reverse the order of the two characters on either
side of the cursor

< control - u > delete line

< control - v >, PageDn PageDn move cursor down one screen

< control - w > < control - x > cut the selection

< control - x >, < control - s> < control - s > save

< control - y >, F18 < control - v > paste the selection

none < control - a > select the entire contents of the widget

< control - \ > clear any selection in the widget

< control - ->, < control - / > < control - Z > undoes previous edits in the Source window

< meta - "<" > none move cursor to the beginning of the file

< meta - ">" > none move cursor to the end of the file

< meta - v >, PageUp PageUp move cursor up one screen

< Meta - w> < control - c > copy selection

Keystrokes - UNIX Keystrokes - Windows Result
Sim SE User’s Manual

Main and Source window mouse and keyboard shortcuts UM-607
The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

< F8 > search for the most recent command that
matches the characters typed (Main window
only)

< F9> run simulation

< F10 > continue simulation

< F11 > single-step

< F12> step-over

Keystrokes - UNIX Keystrokes - Windows Result
ModelSim SE User’s Manual

UM-608 E - ModelSim shortcuts

Model
List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key Action

<left arrow> scroll listing left (selects and highlights the item to the left of the
currently selected item)

<right arrow> scroll listing right (selects and highlights the item to the right of
the currently selected item)

<up arrow> scroll listing up

<down arrow> scroll listing down

<page up>
<control-up arrow>

scroll listing up by page

<page down>
<control-down
arrow>

scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signal

<shift-tab> searches backward (up) to the previous transition on the selected
signal (does not function on HP workstations)

<shift-left arrow>
<shift-right arrow>

extends selection left/right

<control-f> Windows
<control-s> UNIX

opens the Find dialog box to find the specified item label within
the list display
Sim SE User’s Manual

Wave window mouse and keyboard shortcuts UM-609
Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - drag down and right>a

a. If you enter zoom mode by selecting View > Mouse Mode > Zoom Mode, you do
not need to hold down the <Ctrl> key.

zoom area (in)

< control - left-button - drag up and right> zoom out

< control - left-button - drag up and left> zoom fit

<left-button - drag> (Select mode)
< middle-button - drag> (Zoom mode)

moves closest cursor

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom (vertical scroll) or far left or
right (horizontal scroll)

< middle mouse-button - click in scroll bar trough>
(UNIX) only

scrolls window to position of click

Keystroke Action

s bring into view and center the currently active cursor

i I or + zoom in (mouse pointer must be over the cursor or waveform
panes)

o O or - zoom out (mouse pointer must be over the cursor or waveform
panes)

f or F zoom full (mouse pointer must be over the cursor or waveform
panes)

l or L zoom last (mouse pointer must be over the cursor or waveform
panes)

r or R zoom range (mouse pointer must be over the cursor or
waveform panes)

<up arrow>/
<down arrow>

with mouse over waveform pane, scrolls entire window up/
down one line; with mouse over pathname or values pane,
scrolls highlight up/down one line

<left arrow> scroll pathname, values, or waveform pane left

<right arrow> scroll pathname, values, or waveform pane right
ModelSim SE User’s Manual

UM-610 E - ModelSim shortcuts

Model
<page up> scroll waveform pane up by a page

<page down> scroll waveform pane down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> Windows
<control-s> UNIX

open the find dialog box; searches within the specified field in
the pathname pane for text strings

<control-left arrow> scroll pathname, values, or waveform pane left by a page

<control-right arrow> scroll pathname, values, or waveform pane right by a page

Keystroke Action
Sim SE User’s Manual

 UM-611
F - System initialization

Appendix contents
Files accessed during startup UM-612

Environment variables accessed during startup UM-613

Initialization sequence UM-615

ModelSim goes through numerous steps as it initializes the system during startup. It
accesses various files and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.
ModelSim SE User’s Manual

UM-612 F - System initialization

Model
Files accessed during startup

The table below describes the files that are read during startup. They are listed in the order
in which they are accessed.

File Purpose

modelsim.ini contains initial tool settings; see "Preference variables located in
INI files" (UM-524) for specific details on the modelsim.ini file

location map file used by ModelSim tools to find source files based on easily
reallocated "soft" paths; default file name is mgc_location_map

pref.tcl contains defaults for fonts, colors, prompts, window positions,
and other simulator window characteristics; see "Preference
variables located in Tcl files" (UM-540) for specific details on the
pref.tcl file

modelsim.tcl contains user-customized settings for fonts, colors, prompts,
window positions, and other simulator window characteristics;
see "Preference variables located in Tcl files" (UM-540) for more
details on the modelsim.tcl file

.modelsim (UNIX) or
Windows registry

contains last working directory, project file, printer defaults, and
window and toolbar configurations

<project_name>.mpf if available, loads last project file which is specified in the
registry (Windows) or $(HOME)/.modelsim (UNIX); see "What
are projects?" (UM-38) for details on project settings
Sim SE User’s Manual

Environment variables accessed during startup UM-613
Environment variables accessed during startup

The table below describes the environment variables that are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (UM-521).

Environment variable Purpose

MODEL_TECH set by ModelSim to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM identifies the pathname of the modelsim.ini file

MGC_WD identifies the Mentor Graphics working directory

MGC_LOCATION_MAP identifies the pathname of the location map file; set by ModelSim if not
defined

MODEL_TECH_TCL identifies the pathname of all Tcl libraries installed with ModelSim

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the pathname of the MGC tool suite

TCL_LIBRARY identifies the pathname of the Tcl library; set by ModelSim to the same
pathname as MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

TK_LIBRARY identifies the pathname of the Tk library; set by ModelSim to the same
pathname as MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

ITCL_LIBRARY identifies the pathname of the [incr]Tcl library; set by ModelSim to the
same path as MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

ITK_LIBRARY identifies the pathname of the [incr]Tk library; set by ModelSim to the
same pathname as MODEL_TECH_TCL; must point to libraries supplied
by Model Technology

VSIM_LIBRARY identifies the pathname of the Tcl files that are used by ModelSim; set by
ModelSim to the same pathname as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging information about
FLI/PLI/VPI function calls; set to any value before invoking the simulator

MTI_LIB_DIR identifies the path to all Tcl libraries installed with ModelSim

MTI_VCO_MODE determines which version of ModelSim to use on platforms that support
both 32- and 64-bit versions when ModelSim executables are invoked
from the modeltech/bin directory by a Unix shell command (using full
path specification or PATH search)
ModelSim SE User’s Manual

UM-614 F - System initialization

Model
MODELSIM_TCL identifies the pathname of user-customized GUI preferences (e.g.,
C:\modeltech\modelsim.tcl; this environment variable can be a list of file
pathnames, separated by semicolons (Windows) or colons (UNIX)

Environment variable Purpose
Sim SE User’s Manual

Initialization sequence UM-615
Initialization sequence

The following list describes in detail ModelSim’s initialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except
MTI_LIB_DIR which is a Tcl variable). Instances of $(NAME) denote paths that are
determined by an environment variable (except $(MTI_LIB_DIR) which is determined by
a Tcl variable).

1 Determines the path to the executable directory (../modeltech/<platform>/). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2 Finds the modelsim.ini file by evaluating the following conditions:

• use MODELSIM if it exists; else

• use $(MGC_WD)/modelsim.ini; else

• use ./modelsim.ini; else

• use $(MODEL_TECH)/modelsim.ini; else

• use $(MODEL_TECH)/../modelsim.ini; else

• use $(MGC_HOME)/lib/modelsim.ini; else

• set path to ./modelsim.ini even though the file doesn’t exist

3 Finds the location map file by evaluating the following conditions:

• use MGC_LOCATION_MAP if it exists (if this variable is set to "no_map", ModelSim
skips initialization of the location map); else

• use mgc_location_map if it exists; else

• use $(HOME)/mgc/mgc_location_map; else

• use $(HOME)/mgc_location_map; else

• use $(MGC_HOME)/etc/mgc_location_map; else

• use $(MGC_HOME)/shared/etc/mgc_location_map; else

• use $(MODEL_TECH)/mgc_location_map; else

• use $(MODEL_TECH)/../mgc_location_map; else

• use no map

4 Reads various variables from the [vsim] section of the modelsim.ini file. See "[vsim]
simulator control variables" (UM-529) for more details.

5 Parses any command line arguments that were included when you started ModelSim and
reports any problems.

6 Defines the following environment variables:

• use MODEL_TECH_TCL if it exists; else
ModelSim SE User’s Manual

UM-616 F - System initialization

Model
• set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl

• set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.3

• set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.3

• set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0

• set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

• set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

7 Initializes the simulator’s Tcl interpreter.

8 Checks for a valid license (a license is not checked out unless specified by a modelsim.ini
setting or command line option).

The next four steps relate to initializing the graphical user interface.

9 Sets Tcl variable MTI_LIB_DIR=$(MODEL_TECH_TCL)

10 Loads $(MTI_LIB_DIR)/vsim/pref.tcl.

11 Finds the modelsim.tcl file by evaluating the following conditions:

• use MODELSIM_TCL environment variable if it exists (if MODELSIM_TCL is a list of
files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

12 Loads last working directory, project file, printer defaults, and window and toolbar
configurations from the registry (Windows) or $(HOME)/.modelsim (UNIX).

That completes the initialization sequence. Also note the following about the modelsim.ini
file:

• When you change the working directory within ModelSim, the tool reads the [library],
[vcom], and [vlog] sections of the local modelsim.ini file. When you make changes in the
compiler or simulator options dialog or use the vmap command, the tool updates the
appropriate sections of the file.

• The pref.tcl file references the default .ini file via the [GetPrivateProfileString] Tcl
command. The .ini file that is read will be the default file defined at the time pref.tcl is
loaded.
Sim SE User’s Manual

 UM-617
G - Logic Modeling SmartModels

Appendix contents
VHDL SmartModel interface UM-618

Creating foreign architectures with sm_entity UM-619
Vector ports UM-621
Command channel. UM-622
SmartModel Windows UM-623
Memory arrays UM-624

Verilog SmartModel interface UM-625
Linking the LMTV interface to the simulator. UM-625

The Logic Modeling SWIFT-based SmartModel library can be used with ModelSim VHDL and
Verilog. The SmartModel library is a collection of behavioral models supplied in binary form
with a procedural interface that is accessed by the simulator. This appendix describes how to
use the SmartModel library with ModelSim.

The SmartModel library must be obtained from Logic Modeling along with the
documentation that describes how to use it. This appendix only describes the specifics of
using the library with ModelSim.

A 32-bit SmartModel will not run with a 64-bit version of SE. When trying to load the
operating system specific 32-bit library into the 64-bit executable, the pointer sizes will be
incorrect.
ModelSim SE User’s Manual

UM-618 G - Logic Modeling SmartModels

Model
VHDL SmartModel interface

ModelSim VHDL interfaces to a SmartModel through a foreign architecture. The foreign
architecture contains a foreign attribute string that associates a specific SmartModel with
the architecture. On elaboration of the foreign architecture, the simulator automatically
loads the SmartModel library software and establishes communication with the specific
SmartModel.

Enabling the interface

To enable the SmartModel interface you must do the following:

• Set the LMC_HOME environment variable to the root of the SmartModel library
installation directory. Consult Logic Modeling's documentation for details.

• Uncomment the appropriate libswift entry in the modelsim.ini file for your operating
system.

• If you are running the Windows operating system, you must also comment out the default
libsm entry (precede the line with the ";" character) and uncomment the libsm entry for
the Windows operating system.

The libswift and libsm entries are found under the [lmc] section of the default modelsim.ini
file located in the ModelSim installation directory. The default settings are as follows:

[lmc]
; ModelSim's interface to Logic Modeling's SmartModel SWIFT software
libsm = $MODEL_TECH/libsm.sl
; ModelSim's interface to Logic Modeling's SmartModel SWIFT software (Windows
NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling's SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling's SmartModel SWIFT software (IBM RISC System/6000)
; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling's SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling's SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll
; Logic Modeling's SmartModel SWIFT software (Linux)
; libswift = $LMC_HOME/lib/x86_linux.lib/libswift.so

The libsm entry points to the ModelSim dynamic link library that interfaces the foreign
architecture to the SmartModel software. The libswift entry points to the Logic Modeling
dynamic link library software that accesses the SmartModels. The simulator automatically
loads both the libsm and libswift libraries when it elaborates a SmartModel foreign
architecture.

By default, the libsm entry points to the libsm.sl supplied in the ModelSim installation
directory indicated by the MODEL_TECH environment variable. ModelSim
automatically sets the MODEL_TECH environment variable to the appropriate directory
containing the executables and binaries for the current operating system.
Sim SE User’s Manual

VHDL SmartModel interface UM-619
Creating foreign architectures with sm_entity

The ModelSim sm_entity tool automatically creates entities and foreign architectures for
SmartModels. Its usage is as follows:

Syntax

sm_entity
[-] [-xe] [-xa] [-c] [-all] [-v] [-93] [<SmartModelName>...]

Arguments

-

Read SmartModel names from standard input.

-xe

Do not generate entity declarations.

-xa

Do not generate architecture bodies.

-c

Generate component declarations.

-all

Select all models installed in the SmartModel library.

-v

Display progress messages.

-93

Use extended identifiers where needed.

<SmartModelName>

Name of a SmartModel (see the SmartModel library documentation for details on
SmartModel names).

By default, the sm_entity tool writes an entity and foreign architecture to stdout for each
SmartModel name listed on the command line. Optionally, you can include the component
declaration (-c), exclude the entity (-xe), and exclude the architecture (-xa).

The simplest way to prepare SmartModels for use with ModelSim VHDL is to generate the
entities and foreign architectures for all installed SmartModels, and compile them into a
library named lmc. This is easily accomplished with the following commands:

% sm_entity -all > sml.vhd
% vlib lmc
% vcom -work lmc sml.vhd

To instantiate the SmartModels in your VHDL design, you also need to generate
component declarations for the SmartModels. Add these component declarations to a
package named sml (for example), and compile the package into the lmc library:

% sm_entity -all -c -xe -xa > smlcomp.vhd
ModelSim SE User’s Manual

UM-620 G - Logic Modeling SmartModels

Model
Edit the resulting smlcomp.vhd file to turn it into a package of SmartModel component
declarations as follows:

library ieee;
use ieee.std_logic_1164.all;
package sml is

<component declarations go here>
end sml;

Compile the package into the lmc library:

% vcom -work lmc smlcomp.vhd

The SmartModels can now be referenced in your design by adding the following library
and use clauses to your code:

library lmc;
use lmc.sml.all;

The following is an example of an entity and foreign architecture created by sm_entity for
the cy7c285 SmartModel.

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (TimingVersion : STRING := "CY7C285-65";

DelayRange : STRING := "Max";
MemoryFile : STRING := "memory");

port (A0 : in std_logic;
A1 : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_logic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_logic;
A9 : in std_logic;
A10 : in std_logic;
A11 : in std_logic;
A12 : in std_logic;
A13 : in std_logic;
A14 : in std_logic;
A15 : in std_logic;
CS : in std_logic;
O0 : out std_logic;
O1 : out std_logic;
O2 : out std_logic;
O3 : out std_logic;
O4 : out std_logic;
O5 : out std_logic;
O6 : out std_logic;
O7 : out std_logic;
WAIT_PORT : inout std_logic);

end;

architecture SmartModel of cy7c285 is
attribute FOREIGN : STRING;
attribute FOREIGN of SmartModel : architecture is

"sm_init $MODEL_TECH/libsm.sl ; cy7c285";
begin
end SmartModel;
Sim SE User’s Manual

VHDL SmartModel interface UM-621
Entity details

• The entity name is the SmartModel name (you can manually change this name if you
like).

• The port names are the same as the SmartModel port names (these names must not be
changed). If the SmartModel port name is not a valid VHDL identifier, then sm_entity
automatically converts it to a valid name. If sm_entity is invoked with the -93 option,
then the identifier is converted to an extended identifier, and the resulting entity must also
be compiled with the -93 option. If the -93 option had been specified in the example
above, then WAIT would have been converted to \WAIT\. Note that in this example the
port WAIT was converted to WAIT_PORT because wait is a VHDL reserved word.

• The port types are std_logic. This data type supports the full range of SmartModel logic
states.

• The DelayRange, TimingVersion, and MemoryFile generics represent the SmartModel
attributes of the same name. Consult your SmartModel library documentation for a
description of these attributes (and others). Sm_entity creates a generic for each attribute
of the particular SmartModel. The default generic value is the default attribute value that
the SmartModel has supplied to sm_entity.

Architecture details

• The first part of the foreign attribute string (sm_init) is the same for all SmartModels.

• The second part ($MODEL_TECH/libsm.sl) is taken from the libsm entry in the
initialization file, modelsim.ini.

• The third part (cy7c285) is the SmartModel name. This name correlates the architecture
with the SmartModel at elaboration.

Vector ports

The entities generated by sm_entity only contain single-bit ports, never vectored ports.
This is necessary because ModelSim correlates entity ports with the SmartModel SWIFT
interface by name. However, for ease of use in component instantiations, you may want to
create a custom component declaration and component specification that groups ports into
vectors. You can also rename and reorder the ports in the component declaration. You can
also reorder the ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY7C285 SmartModel:

component cy7c285
generic (TimingVersion : STRING := "CY7C285-65";

DelayRange : STRING := "Max";
MemoryFile : STRING := "memory");

port (A : in std_logic_vector (15 downto 0);
CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAIT_PORT : inout std_logic);

end component;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),

A1 => A(1),
ModelSim SE User’s Manual

UM-622 G - Logic Modeling SmartModels

Model
A2 => A(2),
A3 => A(3),
A4 => A(4),
A5 => A(5),
A6 => A(6),
A7 => A(7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
A11 => A(11),
A12 => A(12),
A13 => A(13),
A14 => A(14),
A15 => A(15),
CS => CS,
O0 => O(0),
O1 => O(1),
O2 => O(2),
O3 => O(3),
O4 => O(4),
O5 => O(5),
O6 => O(6),
O7 => O(7),
WAIT_PORT => WAIT_PORT);

Command channel

The command channel is a SmartModel feature that lets you invoke SmartModel specific
commands. These commands are documented in the SmartModel library documentation
from Synopsys. ModelSim provides access to the Command Channel from the command
line. The form of a SmartModel command is:

lmc <instance_name>|-all "<SmartModel command>"

The instance_name argument is either a full hierarchical name or a relative name of a
SmartModel instance. A relative name is relative to the current environment setting (see
environment command (CR-161)). For example, to turn timing checks off for SmartModel
/top/u1:

lmc /top/u1 "SetConstraints Off"

Use -all to apply the command to all SmartModel instances. For example, to turn timing
checks off for all SmartModel instances:

lmc -all "SetConstraints Off"

There are also some SmartModel commands that apply globally to the current simulation
session rather than to models. The form of a SmartModel session command is:

lmcsession "<SmartModel session command>"
Sim SE User’s Manual

VHDL SmartModel interface UM-623
SmartModel Windows

Some models in the SmartModel library provide access to internal registers with a feature
called SmartModel Windows. Refer to Logic Modeling’s SmartModel library
documentation (available on Synopsys’ web site) for details on this feature. The simulator
interface to this feature is described below.

Window names that are not valid VHDL or Verilog identifiers are converted to VHDL
extended identifiers. For example, with a window named z1I10.GSR.OR, ModelSim will
treat the name as \z1I10.GSR.OR\ (for all commands including lmcwin, add wave, and
examine). You must then use that name in all commands. For example,

add wave /top/swift_model/\z1I10.GSR.OR\

Extended identifiers are case sensitive.

ReportStatus

The ReportStatus command displays model information, including the names of window
registers. For example,

lmc /top/u1 ReportStatus

SmartModel Windows description:

WA "Read-Only (Read Only)"
WB "1-bit"
WC "64-bit"

This model contains window registers named wa, wb, and wc. These names can be used in
subsequent window (lmcwin) commands.

SmartModel lmcwin commands

The following window commands are supported:

• lmcwin read <window_instance> [-<radix>]

• lmcwin write <window_instance> <value>

• lmcwin enable <window_instance>

• lmcwin disable <window_instance>

• lmcwin release <window_instance>

Each command requires a window instance argument that identifies a specific model
instance and window name. For example, /top/u1/wa refers to window wa in model
instance /top/u1.

lmcwin read

The lmcwin read command displays the current value of a window. The optional radix
argument is -binary, -decimal, or -hexadecimal (these names can be abbreviated). The
default is to display the value using the std_logic characters. For example, the following
command displays the 64-bit window wc in hexadecimal:

lmcwin read /top/u1/wc -h
ModelSim SE User’s Manual

UM-624 G - Logic Modeling SmartModels

Model
lmcwin write

The lmcwin write command writes a value into a window. The format of the value
argument is the same as used in other simulator commands that take value arguments. For
example, to write 1 to window wb, and all 1’s to window wc:

lmcwin write /top/u1/wb 1
lmcwin write /top/u1/wc X"FFFFFFFFFFFFFFFF"

lmcwin enable

The lmcwin enable command enables continuous monitoring of a window. The specified
window is added to the model instance as a signal (with the same name as the window) of
type std_logic or std_logic_vector. This signal's values can then be referenced in simulator
commands that read signal values, such as the add list command (CR-48) shown below. The
window signal is continuously updated to reflect the value in the model. For example, to
list window wa:

lmcwin enable /top/u1/wa
add list /top/u1/wa

lmcwin disable

The lmcwin disable command disables continuous monitoring of a window. The window
signal is not deleted, but it no longer is updated when the model’s window register changes
value. For example, to disable continuous monitoring of window wa:

lmcwin disable /top/u1/wa

lmcwin release

Some windows are actually nets, and the lmcwin write command behaves more like a
continuous force on the net. The lmcwin release command disables the effect of a previous
lmcwin write command on a window net.

Memory arrays

A memory model usually makes the entire register array available as a window. In this case,
the window commands operate only on a single element at a time. The element is selected
as an array reference in the window instance specification. For example, to read element 5
from the window memory mem:

lmcwin read /top/u2/mem(5)

Omitting the element specification defaults to element 0. Also, continuous monitoring is
limited to a single array element. The associated window signal is updated with the most
recently enabled element for continuous monitoring.
Sim SE User’s Manual

Verilog SmartModel interface UM-625
Verilog SmartModel interface

The SWIFT SmartModel library, beginning with release r40b, provides an optional library
of Verilog modules and a PLI application that communicates between a simulator's PLI and
the SWIFT simulator interface. The Logic Modeling documentation refers to this as the
Logic Models to Verilog (LMTV) interface. To install this option, you must select the
simulator type "Verilog" when you run Logic Modeling’s SmartInstall program.

Linking the LMTV interface to the simulator

Synopsys provides a dynamically loadable library that links ModelSim to the LMTV
interface. See chapter 5, "Using MTI Verilog with Synopsys Models," in the "Simulator
Configuration Guide for Synopsys Models" (available on Synopsys’ web site) for
directions on how to link to this library.
ModelSim SE User’s Manual

UM-626 G - Logic Modeling SmartModels

Model
Sim SE User’s Manual

 UM-627
H - Logic Modeling hardware models

Appendix contents
VHDL hardware model interface UM-628

Creating foreign architectures with hm_entity UM-629
Vector ports UM-631
Hardware model commands UM-632

Logic Modeling hardware models can be used with ModelSim VHDL and Verilog. A
hardware model allows simulation of a device using the actual silicon installed as a
hardware model in one of Logic Modeling's hardware modeling systems. The hardware
modeling system is a network resource with a procedural interface that is accessed by the
simulator. This appendix describes how to use Logic Modeling hardware models with
ModelSim.

Note: Please refer to Logic Modeling documentation from Synopsys for details on using
the hardware modeler. This appendix only describes the specifics of using hardware
models with ModelSim SE.
ModelSim SE User’s Manual

UM-628 H - Logic Modeling hardware models

Model
VHDL hardware model interface

ModelSim VHDL interfaces to a hardware model through a foreign architecture. The
foreign architecture contains a foreign attribute string that associates a specific hardware
model with the architecture. On elaboration of the foreign architecture, the simulator
automatically loads the hardware modeler software and establishes communication with
the specific hardware model.

The ModelSim software locates the hardware modeler interface software based on entries
in the modelsim.ini initialization file. The simulator and the hm_entity tool (for creating
foreign architectures) both depend on these entries being set correctly. These entries are
found under the [lmc] section of the default modelsim.ini file located in the ModelSim
installation directory. The default settings are as follows:

[lmc]
; ModelSim's interface to Logic Modeling's hardware modeler SFI software
libhm = $MODEL_TECH/libhm.sl
; ModelSim's interface to Logic Modeling's hardware modeler SFI software
(Windows NT)
; libhm = $MODEL_TECH/libhm.dll
; Logic Modeling's hardware modeler SFI software (HP 9000 Series 700)
; libsfi = <sfi_dir>/lib/hp700/libsfi.sl
; Logic Modeling's hardware modeler SFI software (IBM RISC System/6000)
; libsfi = <sfi_dir>/lib/rs6000/libsfi.a
; Logic Modeling's hardware modeler SFI software (Sun4 Solaris)
; libsfi = <sfi_dir>/lib/sun4.solaris/libsfi.so
; Logic Modeling's hardware modeler SFI software (Window NT)
; libsfi = <sfi_dir>/lib/pcnt/lm_sfi.dll
; Logic Modeling's hardware modeler SFI software (Linux)
; libsfi = <sfi_dir>/lib/linux/libsfi.so

The libhm entry points to the ModelSim dynamic link library that interfaces the foreign
architecture to the hardware modeler software. The libsfi entry points to the Logic
Modeling dynamic link library software that accesses the hardware modeler. The simulator
automatically loads both the libhm and libsfi libraries when it elaborates a hardware model
foreign architecture.

By default, the libhm entry points to the libhm.sl supplied in the ModelSim installation
directory indicated by the MODEL_TECH environment variable. ModelSim automatically
sets the MODEL_TECH environment variable to the appropriate directory containing the
executables and binaries for the current operating system. If you are running the Windows
operating system, then you must comment out the default libhm entry (precede the line
with the ";" character) and uncomment the libhm entry for the Windows operating system.

Uncomment the appropriate libsfi entry for your operating system, and replace <sfi_dir>
with the path to the hardware modeler software installation directory. In addition, you must
set the LM_LIB and LM_DIR environment variables as described in Logic Modeling
documentation from Synopsys.
Sim SE User’s Manual

VHDL hardware model interface UM-629
Creating foreign architectures with hm_entity

The ModelSim hm_entity tool automatically creates entities and foreign architectures for
hardware models. Its usage is as follows:

Syntax

hm_entity
[-xe] [-xa] [-c] [-93] <shell software filename>

Arguments

-xe

Do not generate entity declarations.

-xa

Do not generate architecture bodies.

-c

Generate component declarations.

-93

Use extended identifiers where needed.

<shell software filename>

Hardware model shell software filename (see Logic Modeling documentation from
Synopsys for details on shell software files)

By default, the hm_entity tool writes an entity and foreign architecture to stdout for the
hardware model. Optionally, you can include the component declaration (-c), exclude the
entity (-xe), and exclude the architecture (-xa).

Once you have created the entity and foreign architecture, you must compile it into a
library. For example, the following commands compile the entity and foreign architecture
for a hardware model named LMTEST:

% hm_entity LMTEST.MDL > lmtest.vhd
% vlib lmc
% vcom -work lmc lmtest.vhd

To instantiate the hardware model in your VHDL design, you will also need to generate a
component declaration. If you have multiple hardware models, you may want to add all of
their component declarations to a package so that you can easily reference them in your
design. The following command writes the component declaration to stdout for the
LMTEST hardware model.

% hm_entity -c -xe -xa LMTEST.MDL

Paste the resulting component declaration into the appropriate place in your design or into
a package.

The following is an example of the entity and foreign architecture created by hm_entity for
the CY7C285 hardware model:

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (DelayRange : STRING := "Max");
port (A0 : in std_logic;
ModelSim SE User’s Manual

UM-630 H - Logic Modeling hardware models

Model
A1 : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_logic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_logic;
A9 : in std_logic;
A10 : in std_logic;
A11 : in std_logic;
A12 : in std_logic;
A13 : in std_logic;
A14 : in std_logic;
A15 : in std_logic;
CS : in std_logic;
O0 : out std_logic;
O1 : out std_logic;
O2 : out std_logic;
O3 : out std_logic;
O4 : out std_logic;
O5 : out std_logic;
O6 : out std_logic;
O7 : out std_logic;
W : inout std_logic);

end;

architecture Hardware of cy7c285 is
attribute FOREIGN : STRING;
attribute FOREIGN of Hardware : architecture is

"hm_init $MODEL_TECH/libhm.sl ; CY7C285.MDL";
begin
end Hardware;

Entity details

• The entity name is the hardware model name (you can manually change this name if you
like).

• The port names are the same as the hardware model port names (these names must not be
changed). If the hardware model port name is not a valid VHDL identifier, then
hm_entity issues an error message. If hm_entity is invoked with the -93 option, then the
identifier is converted to an extended identifier, and the resulting entity must also be
compiled with the -93 option. Another option is to create a pin-name mapping file.
Consult the Logic Modeling documentation from Synopsys for details.

• The port types are std_logic. This data type supports the full range of hardware model
logic states.

• The DelayRange generic selects minimum, typical, or maximum delay values. Valid
values are "min", "typ", or "max" (the strings are not case-sensitive). The default is
"max".
Sim SE User’s Manual

VHDL hardware model interface UM-631
Architecture details

• The first part of the foreign attribute string (hm_init) is the same for all hardware models.

• The second part ($MODEL_TECH/libhm.sl) is taken from the libhm entry in the
initialization file, modelsim.ini.

• The third part (CY7C285.MDL) is the shell software filename. This name correlates the
architecture with the hardware model at elaboration.

Vector ports

The entities generated by hm_entity only contain single-bit ports, never vectored ports.
However, for ease of use in component instantiations, you may want to create a custom
component declaration and component specification that groups ports into vectors. You can
also rename and reorder the ports in the component declaration. You can also reorder the
ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY7C285 hardware model:

component cy7c285
generic (DelayRange : STRING := "Max");
port (A : in std_logic_vector (15 downto 0);

CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAIT_PORT : inout std_logic);

end component;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),

A1 => A(1),
A2 => A(2),
A3 => A(3),
A4 => A(4),
A5 => A(5),
A6 => A(6),
A7 => A(7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
A11 => A(11),
A12 => A(12),
A13 => A(13),
A14 => A(14),
A15 => A(15),
CS => CS,
O0 => O(0),
O1 => O(1),
O2 => O(2),
O3 => O(3),
O4 => O(4),
O5 => O(5),
O6 => O(6),
O7 => O(7),
WAIT_PORT => W);
ModelSim SE User’s Manual

UM-632 H - Logic Modeling hardware models

Model
Hardware model commands

The following simulator commands are available for hardware models. Refer to the Logic
Modeling documentation from Synopsys for details on these operations.

lm_vectors on|off <instance_name> [<filename>]

Enable/disable test vector logging for the specified hardware model.

lm_measure_timing on|off <instance_name> [<filename>]

Enable/disable timing measurement for the specified hardware model.

lm_timing_checks on|off <instance_name>

Enable/disable timing checks for the specified hardware model.

lm_loop_patterns on|off <instance_name>

Enable/disable pattern looping for the specified hardware model.

lm_unknowns on|off <instance_name>

Enable/disable unknown propagation for the specified hardware model.
Sim SE User’s Manual

 UM-633
End-User License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS.

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE.

This license is a legal “Agreement” concerning the use of Software between you, the
end user, either individually or as an authorized representative of the company
acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries or authorized
distributors (collectively “Mentor Graphics”). USE OF SOFTWARE INDICATES
YOUR COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS
AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return, or, if received electronically, certify
destruction of Software and all accompanying items within five days after receipt of
Software and receive a full refund of any license fee paid.

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have
acquired with this Agreement, including any updates, modifications, revisions, copies,
documentation and design data (“Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors who maintain exclusive title to all
Software and retain all rights not expressly granted by this Agreement. Mentor Graphics
grants to you, subject to payment of appropriate license fees, a nontransferable,
nonexclusive license to use Software solely: (a) in machine-readable, object-code form;
(b) for your internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site is
restricted to a one-half mile (800 meter) radius. Mentor Graphics’ standard policies and
programs, which vary depending on Software, license fees paid or service plan purchased,
apply to the following and are subject to change: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single
user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or
similar devices); (c) support services provided, including eligibility to receive telephone
support, updates, modifications, and revisions. Current standard policies and programs are
available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development
(“ESD”) Software, Mentor Graphics grants to you a nontransferable, nonexclusive license
to reproduce and distribute executable files created using ESD compilers, including the
ESD run-time libraries distributed with ESD C and C++ compiler Software that are linked
into a composite program as an integral part of your compiled computer program,
provided that you distribute these files only in conjunction with your compiled computer
program. Mentor Graphics does NOT grant you any right to duplicate or incorporate
copies of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Portions or all of certain Software may contain code for experimental
testing and evaluation (“Beta Code”), which may not be used without Mentor Graphics’
explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to
you a temporary, nontransferable, nonexclusive license for experimental use to test and
evaluate the Beta Code without charge for a limited period of time specified by Mentor
ModelSim SE User’s Manual

UM-634 License Agreement

Model
Graphics. This grant and your use of the Beta Code shall not be construed as marketing or
offering to sell a license to the Beta Code, which Mentor Graphics may choose not to
release commercially in any form. If Mentor Graphics authorizes you to use the Beta
Code, you agree to evaluate and test the Beta Code under normal conditions as directed by
Mentor Graphics. You will contact Mentor Graphics periodically during your use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of
your evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements. You
agree that any written evaluations and all inventions, product improvements,
modifications or developments that Mentor Graphics conceived or made during or
subsequent to this Agreement, including those based partly or wholly on your feedback,
will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive
rights, title and interest in all such property. The provisions of this subsection shall survive
termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to
support the authorized use. Each copy must include all notices and legends embedded in
Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a
record of the number and primary location of all copies of Software, including copies
merged with other software, and shall make those records available to Mentor Graphics
upon request. You shall not make Software available in any form to any person other than
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does
not disclose it or use it except as permitted by this Agreement. Except as otherwise
permitted for purposes of interoperability as specified by applicable and mandatory local
law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way
derive from Software any source code. You may not sublicense, assign or otherwise
transfer Software, this Agreement or the rights under it, whether by operation of law or
otherwise (“attempted transfer”), without Mentor Graphics’ prior written consent and
payment of Mentor Graphics’ then-current applicable transfer charges. Any attempted
transfer without Mentor Graphics' prior written consent shall be a material breach of this
Agreement and may, at Mentor Graphics' option, result in the immediate termination of
the Agreement and licenses granted under this Agreement.

The terms of this Agreement, including without limitation, the licensing and assignment
provisions shall be binding upon your heirs, successors in interest and assigns. The
provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly
installed, will substantially conform to the functional specifications set forth in the
applicable user manual. Mentor Graphics does not warrant that Software will meet
your requirements or that operation of Software will be uninterrupted or error free.
The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS' OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT
MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
Sim SE User’s Manual

 UM-635
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO
WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH
IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST;
OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS
IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT.
MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS)
WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY,
EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT
EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR SERVICE
GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID,
MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR
ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN
CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION WHERE
THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS
MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS, LOSS, COST,
DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING
OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS DESCRIBED
IN SECTION 7.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought
against you alleging that Software infringes a patent or copyright or misappropriates a
trade secret in the United States, Canada, Japan, or member state of the European
Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree
that as conditions to Mentor Graphics' obligations under this section you must:
(a) notify Mentor Graphics promptly in writing of the action; (b) provide Mentor
Graphics all reasonable information and assistance to defend or settle the action; and
(c) grant Mentor Graphics sole authority and control of the defense or settlement of
the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense:
(a) replace or modify Software so that it becomes noninfringing; (b) procure for you
ModelSim SE User’s Manual

UM-636 License Agreement

Model
the right to continue using Software; or (c) require the return of Software and refund
to you any license fee paid, less a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the
modification of Software other than by Mentor Graphics; (c) the use of other than a
current unaltered release of Software; (d) the use of Software as part of an infringing
process; (e) a product that you make, use or sell; (f) any Beta Code contained in
Software; (g) any Software provided by Mentor Graphics’ licensors who do not
provide such indemnification to Mentor Graphics’ customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for
its attorney fees and other costs related to the action upon a final judgment.

9.4. THIS SECTION 9 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR
TRADE SECRET MISAPPROPRIATION BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This
Agreement will immediately terminate upon notice if you exceed the scope of license
granted or otherwise fail to comply with the provisions of Sections 1, 2, or 4. For any
other material breach under this Agreement, Mentor Graphics may terminate this
Agreement upon 30 days written notice if you are in material breach and fail to cure such
breach within the 30-day notice period. If Software was provided for limited term use,
this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor
Graphics or certify deletion and destruction of Software, including all copies, to Mentor
Graphics’ reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government
agencies, which prohibit export or diversion of certain products, information about the
products, and direct products of the products to certain countries and certain persons. You
agree that you will not export any Software or direct product of Software in any manner
without first obtaining all necessary approval from appropriate local and United States
government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense
and is commercial computer software provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is
subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, as
applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 SW
Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by
Mentor Graphics from Microsoft or other licensors, Microsoft or the applicable licensor is
a third party beneficiary of this Agreement with the right to enforce the obligations set
forth herein.

14. AUDIT RIGHTS. With reasonable prior notice, Mentor Graphics shall have the right to
audit during your normal business hours all records and accounts as may contain
information regarding your compliance with the terms of this Agreement. Mentor
Graphics shall keep in confidence all information gained as a result of any audit. Mentor
Sim SE User’s Manual

 UM-637
Graphics shall only use or disclose such information as necessary to enforce its rights
under this Agreement.

15. CONTROLLING LAW AND JURISDICTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF
OREGON, USA, IF YOU ARE LOCATED IN NORTH OR SOUTH AMERICA, AND
THE LAWS OF IRELAND IF YOU ARE LOCATED OUTSIDE OF NORTH AND
SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Dublin, Ireland when the laws of Ireland apply,
or Wilsonville, Oregon when the laws of Oregon apply. This section shall not restrict
Mentor Graphics’ right to bring an action against you in the jurisdiction where your place
of business is located. The United Nations Convention on Contracts for the International
Sale of Goods does not apply to this Agreement.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent
jurisdiction to be void, invalid, unenforceable or illegal, such provision shall be severed
from this Agreement and the remaining provisions will remain in full force and effect.

17. PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in
the currency specified on the applicable invoice, within 30 days from the date of such
invoice. This Agreement contains the parties' entire understanding relating to its subject
matter and supersedes all prior or contemporaneous agreements, including but not limited
to any purchase order terms and conditions, except valid license agreements related to the
subject matter of this Agreement (which are physically signed by you and an authorized
agent of Mentor Graphics) either referenced in the purchase order or otherwise governing
this subject matter. This Agreement may only be modified in writing by authorized
representatives of the parties. Waiver of terms or excuse of breach must be in writing and
shall not constitute subsequent consent, waiver or excuse. The prevailing party in any
legal action regarding the subject matter of this Agreement shall be entitled to recover, in
addition to other relief, reasonable attorneys' fees and expenses.

Rev. 040401, Part Number 221417
ModelSim SE User’s Manual

UM-638

Model
Sim SE User’s Manual

Index
CR = Command Reference, UM = User’s Manual, GR = GUI Reference
Symbols

#, comment character UM-476
+acc option, design object visibility UM-126
+typdelays CR-365
-, in a coverage report UM-353
.so, shared object file

loading PLI/VPI C applications UM-568
loading PLI/VPI C++ applications UM-574

{} CR-15
’hasX, hasX CR-24

Numerics

1076, IEEE Std UM-30
differences between versions UM-75

1364, IEEE Std UM-30, UM-113
2001, keywords, disabling CR-366
64-bit libraries UM-66
64-bit ModelSim, using with 32-bit FLI apps UM-598
64-bit time

now variable UM-543
Tcl time commands UM-481

A

+acc option, design object visibility UM-126
abort command CR-44
absolute time, using @ CR-18
ACC routines UM-591
accelerated packages UM-65
access

hierarchical objects UM-417
limitations in mixed designs UM-190

Active Processes pane GR-108
see also windows, Active Processes pane

add button command CR-45
Add file to Project dialog GR-44
Add Folder dialog GR-47
add list command CR-48
add monitor command CR-51
add PSL files UM-53, GR-53, GR-56
add wave command CR-52
add_menu command CR-56
add_menucb command CR-58
add_menuitem simulator command CR-59
add_separator command CR-60

add_submenu command CR-61
aggregates, SystemC UM-180
alias command CR-62
analog

signal formatting CR-53, GR-239
supported signal types GR-239

annotating interconnect delays, v2k_int_delays CR-389
architecture simulator state variable UM-542
archives

described UM-59
archives, library CR-356
argc simulator state variable UM-542
arguments

passing to a DO file UM-487
arguments, accessing commandl-line UM-183
arithmetic package warnings, disabling UM-538
array of sc_signal<T> UM-180
arrays

indexes CR-12
slices CR-12, CR-15

AssertFile .ini file variable UM-529
assertion fail command CR-63
assertion pass command CR-65
assertion report command CR-67
AssertionFailEnable .ini variable UM-529
AssertionFailLimit .ini variable UM-529
AssertionFailLog .ini variable UM-529
AssertionFormat .ini file variable UM-529
AssertionFormatBreak .ini file variable UM-529
AssertionFormatError .ini file variable UM-529
AssertionFormatFail .ini file variable UM-530
AssertionFormatFatal .ini file variable UM-530
AssertionFormatNote .ini file variable UM-530
AssertionFormatWarning .ini file variable UM-530
AssertionPassEnable .ini variable UM-530
AssertionPassLimit .ini variable UM-530
AssertionPassLog .ini variable UM-530
assertions

configuring from the GUI GR-86
enabling CR-63, CR-65
failure behavior CR-63
file and line number UM-529
flow UM-362
library and use clauses UM-367
limitations UM-362
messages

alternate output file UM-381
turning off UM-538

Index
multiclocked properties UM-369
pass behavior CR-65
reporting on CR-67, UM-381
selecting severity that stops simulation GR-86
setting format of messages UM-529
testing for with onbreak command CR-214
viewing in Wave window UM-382
warnings, locating UM-529

Assertions pane
described GR-110
hiding/showing columns GR-112

assume directives
disabling UM-363
SimulateAssumeDirectives .ini variable UM-533

AtLeast counts, functional coverage UM-387
attributes, of signals, using in expressions CR-24
auto find bp command UM-406
auto step mode, C Debug UM-407

B

bad magic number error message UM-227
balloon dialog, toggling on/off GR-256
balloon popup

C Debug GR-99
base (radix)

List window UM-259
Memory window GR-183
Wave window UM-255

batch_mode command CR-69
batch-mode simulations UM-28

halting CR-410
bd (breakpoint delete) command CR-70
binary radix, mapping to std_logic values CR-29
BindAtCompile .ini file variable UM-527
binding, VHDL, default UM-79
bitwise format UM-279
blocking assignments UM-134
bookmark add wave command CR-71
bookmark delete wave command CR-72
bookmark goto wave command CR-73
bookmark list wave command CR-74
bookmarks

Source window GR-204
Wave window UM-250

bp (breakpoint) command CR-75
brackets, escaping CR-15
break

on assertion GR-86
on signal value CR-407

stop simulation run GR-35
BreakOnAssertion .ini file variable UM-530
breakpoints

C code UM-403
conditional CR-407
continuing simulation after CR-252
deleting CR-70, GR-203, GR-264
listing CR-75
setting CR-75, GR-203
setting automatically in C code UM-407
signal breakpoints (when statements) CR-407
Source window, viewing in GR-199
time-based

in when statements CR-411
.bsm file UM-313
buffered/unbuffered output UM-534
bus contention checking CR-84

configuring CR-86
disabling CR-87

bus float checking
configuring CR-89
disabling CR-90
enabling CR-88

busses
escape characters in CR-15
RTL-level, reconstructing UM-234
user-defined CR-53, UM-264

buswise format UM-279
button

adding to windows GR-106
buttons, adding to the Main window toolbar CR-45

C

C applications
compiling and linking UM-568
debugging UM-399

C callstack
moving down CR-237
moving up CR-219

C Debug UM-399
auto find bp UM-406
auto step mode UM-407
debugging functions during elaboration UM-410
debugging functions when exiting UM-414
function entry points, finding UM-406
initialization mode UM-410
menu reference GR-31
registered function calls, identifying UM-407
running from a DO file UM-402

Index
Stop on quit mode UM-414
C Debug setup dialog GR-99
C debugging CR-79
C++ applications

compiling and linking UM-574
cancelling scheduled events, performance UM-108
case choice, must be locally static CR-314
case sensitivity

named port associations UM-207
VHDL vs. Verilog CR-15

causality, tracing in Dataflow window UM-306
cd (change directory) command CR-78
cdbg command CR-79
cdbg_wait_for_starting command UM-402
cell libraries UM-144
cells

hiding in Dataflow window GR-140, GR-141
change command CR-81
change directory, disabled GR-21
Change Memory dialog GR-179
Change Selected Variable dialog GR-167
change_menu_cmd command CR-83
chasing X UM-307
check contention add command CR-84
check contention config command CR-86
check contention off command CR-87
check float add command CR-88
check float config command CR-89
check float off command CR-90
check stable off command CR-91
check stable on command CR-92
-check_synthesis argument CR-312

warning message UM-552
CheckPlusargs .ini file variable (VLOG) UM-530
checkpoint command CR-93
checkpoint/restore UM-86, UM-142
CheckpointCompressMode .ini file variable UM-531
CheckSynthesis .ini file variable UM-527
class member selection, syntax CR-13
class of sc_signal<T> UM-180
cleanup

SystemC state-based code UM-175
clean-up of SystemC state-based code UM-175
clock change, sampling signals at UM-268
clocked comparison UM-276
Code Coverage

$coverage_save system function UM-152
by instance UM-334
columns in workspace GR-116
condition coverage UM-334, UM-355
coverage clear command CR-128

coverage exclude command CR-129
coverage reload command CR-131
coverage report command CR-132
coverage save command CR-135
Current Exclusions pane GR-121
data types supported UM-335
Details pane GR-123
display filter toolbar GR-127
enabling with vcom or vlog UM-337
enabling with vsim UM-337
excluding lines/files UM-347
exclusion filter files UM-348
expression coverage UM-334, UM-356
important notes UM-336
Instance Coverage pane GR-122
Main window coverage data UM-340
merge utility UM-354
merging report files CR-131
merging reports CR-320
missed branches GR-120
missed coverage GR-120
pragma exclusions UM-347
reports UM-350
Source window data UM-341
source window details GR-124
statistics in Main window UM-340
toggle coverage UM-334

excluding signals CR-281
toggle details GR-123
vcover report command CR-322
Workspace pane GR-116

collapsing ports, and coverage reporting UM-345
collapsing time and delta steps UM-232
colorization, in Source window GR-205
columns

hide/showing in GUI GR-262
moving GR-262
sorting by GR-262

Combine Selected Signals dialog GR-161
combining signals, busses CR-53, UM-264
command history GR-28
command line args, accessing

vsim sc_arg command CR-389
CommandHistory .ini file variable UM-531
command-line arguments, accessing UM-183
command-line mode UM-27
commands

.main clear CR-43
abort CR-44
add button CR-45
add list CR-48

Index
add monitor CR-51
add wave CR-52
add_menu CR-56
add_menucb CR-58
add_menuitem CR-59
add_separator CR-60
add_submenu CR-61
alias CR-62
assertion fail command CR-63
assertion pass CR-65
assertion report CR-67
batch_mode CR-69
bd (breakpoint delete) CR-70
bookmark add wave CR-71
bookmark delete wave CR-72
bookmark goto wave CR-73
bookmark list wave CR-74
bp (breakpoint) CR-75
cd (change directory) CR-78
cdbg CR-79
change CR-81
change_menu_cmd CR-83
check contention add CR-84
check contention config CR-86
check contention off CR-87
check float add CR-88
check float config CR-89
check float off CR-90
check stable off CR-91
check stable on CR-92
checkpoint CR-93
compare add CR-94
compare annotate CR-98, CR-101
compare clock CR-99
compare close CR-105
compare delete CR-104
compare info CR-106
compare list CR-107
compare open CR-119
compare options CR-108
compare reload CR-112
compare savediffs CR-115
compare saverules CR-116
compare see CR-117
compare start CR-114
configure CR-123
coverage clear CR-128
coverage exclude CR-129
coverage reload CR-131
coverage report CR-132
coverage save CR-135

dataset alias CR-136
dataset clear CR-137
dataset close CR-138
dataset info CR-139
dataset list CR-140
dataset open CR-141
dataset rename CR-142, CR-143
dataset snapshot CR-144
delete CR-146
describe CR-147
disable_menu CR-149
disable_menuitem CR-150
disablebp CR-148
do CR-151
down CR-152
drivers CR-154
dumplog64 CR-155
echo CR-156
edit CR-157
enable_menu CR-159
enable_menuitem CR-160
enablebp CR-158
environment CR-161
event watching in DO file UM-487
examine CR-162
exit CR-166
fcover clear

functional coverage
clearing database CR-167

fcover comment CR-168
fcover configue CR-169
fcover reload CR-171
fcover report CR-173
fcover save CR-175
find CR-176
force CR-180
gdb dir CR-183
getactivecursortime CR-184
getactivemarkertime CR-185
help CR-186
history CR-187
lecho CR-188
left CR-189
log CR-191
lshift CR-193
lsublist CR-194
macro_option CR-195
mem display CR-196
mem list CR-198
mem load CR-199
mem save CR-202

Index
mem search CR-204
modelsim CR-206
next CR-207
noforce CR-208
nolog CR-209
notation conventions CR-10
notepad CR-211
noview CR-212
nowhen CR-213
onbreak CR-214
onElabError CR-215
onerror CR-216
pause CR-217
play CR-218
pop CR-219
power add CR-220
power report CR-221
power reset CR-222
printenv CR-223, CR-224
profile clear CR-225
profile interval CR-226
profile off CR-227
profile on CR-228
profile option CR-229
profile reload CR-230
profile report CR-231
property list CR-234
property wave CR-235
push CR-237
pwd CR-238
quietly CR-239
quit CR-240
radix CR-241
readers CR-242
record CR-243
report CR-244
restart CR-246
restore CR-248
resume CR-249
right CR-250
run CR-252
sccom CR-254
scgenmod CR-258
search CR-260
searchlog CR-262
seetime CR-264
setenv CR-265
shift CR-266
show CR-267
splitio CR-270
status CR-271

step CR-272
stop CR-273
system UM-479
tb (traceback) CR-274
tcheck_set CR-275
tcheck_status CR-277
toggle add CR-279
toggle disable CR-281
toggle enable CR-282
toggle report CR-283
toggle reset CR-284
transcribe CR-285
transcript CR-286
transcript file CR-287
TreeUpdate CR-423
tssi2mti CR-288
unsetenv CR-289
up CR-290
variables referenced in CR-17
vcd add CR-292
vcd checkpoint CR-293
vcd comment CR-294
vcd dumpports CR-295
vcd dumpportsall CR-297
vcd dumpportsflush CR-298
vcd dumpportslimit CR-299
vcd dumpportsoff CR-300
vcd dumpportson CR-301
vcd file CR-302
vcd files CR-304
vcd flush CR-306
vcd limit CR-307
vcd off CR-308
vcd on CR-309
vcom CR-311
vcover convert CR-319
vcover merge CR-320
vcover report CR-322
vdel CR-327
vdir CR-328
verror CR-329
vgencomp CR-330
view CR-332
virtual count CR-334
virtual define CR-335
virtual delete CR-336
virtual describe CR-337
virtual expand CR-338
virtual function CR-339
virtual hide CR-342
virtual log CR-343

Index
virtual nohide CR-345
virtual nolog CR-346
virtual region CR-348
virtual save CR-349
virtual show CR-350
virtual signal CR-351
virtual type CR-354
vlib CR-356
vlog CR-358
vmake CR-369
vmap CR-370
vopt CR-371
vsim CR-373
VSIM Tcl commands UM-480
vsimDate CR-392
vsimId CR-392
vsimVersion CR-392
wave CR-394
wave create CR-397
wave edit CR-400
wave export CR-403
wave import CR-404
wave modify CR-405
WaveActivateNextPane CR-423
WaveRestoreCursors CR-423
WaveRestoreZoom CR-423
when CR-407
where CR-412
wlf2log CR-413
wlf2vcd CR-415
wlfman CR-416
wlfrecover CR-420
write cell_report CR-421
write format CR-422
write list CR-424
write preferences CR-425
write report CR-426
write timing CR-427
write transcript CR-428
write tssi CR-429
write wave CR-431

comment character
Tcl and DO files UM-476

comment characters in VSIM commands CR-10
compare

add region UM-275
add signals UM-274
by signal UM-274
clocked UM-276
difference markers UM-279
displayed in List window UM-281

icons UM-281
method UM-276
options UM-278
pathnames UM-279
reference dataset UM-272
reference region UM-275
tab UM-273
test dataset UM-273
timing differences UM-279
tolerance UM-276
values UM-280
wave window display UM-279

compare add command CR-94
compare annotate command CR-98, CR-101
compare by region UM-275
compare clock command CR-99
compare close command CR-105
compare delete command CR-104
compare info command CR-106
compare list command CR-107
Compare Memory dialog GR-181
compare open command CR-119
compare options command CR-108
compare reload command CR-112
compare savediffs command CR-115
compare saverules command CR-116
compare see command CR-117
compare simulations UM-225
compare start command CR-114
compatibility, of vendor libraries CR-328
compile

gensrc errors during UM-185
projects

add PSL files UM-53, GR-53, GR-56
compile order

auto generate UM-46
changing UM-46

Compile Order dialog GR-69
Compile Source Files dialog

dialogs
Compile Source Files GR-59

compiler directives UM-153
IEEE Std 1364-2000 UM-153
XL compatible compiler directives UM-154

Compiler Options dialog GR-60
compiling

changing order in the GUI UM-46
graphic interface to GR-59
grouping files UM-47
order, changing in projects UM-46
properties, in projects UM-52

Index
range checking in VHDL CR-316, UM-74
source errors, locating GR-264
SystemC CR-254, CR-258, UM-164

converting sc_main() UM-164
exporting top level module UM-165
for source level debug UM-167
invoking sccom UM-167
linking the compiled source UM-172
modifying source code UM-164
replacing sc_start() UM-164

using sccom vs. raw C++ compiler UM-170
Verilog CR-358, UM-114

incremental compilation UM-115
library components, including CR-361
optimizing performance CR-360
XL ’uselib compiler directive UM-120
XL compatible options UM-119

VHDL CR-311, UM-73
at a specified line number CR-313
selected design units (-just eapbc) CR-313
standard package (-s) CR-316

VITAL packages UM-95
compiling the design

overview UM-25
component declaration

generating SystemC from Verilog or VHDL UM-
223

generating VHDL from Verilog UM-204
vgencomp for SystemC UM-223
vgencomp for VHDL UM-204

component, default binding rules UM-79
Compressing files

VCD tasks UM-462
compressing files

VCD files CR-295, CR-304
concatenation

directives CR-28
of signals CR-27, CR-351

ConcurrentFileLimit .ini file variable UM-531
conditional breakpoints CR-407
configuration simulator state variable UM-542
configurations

instantiation in mixed designs UM-203
Verilog UM-122

configurations, simulating CR-373
configure command CR-123
Configure cover directives dialog GR-149
connectivity, exploring UM-303
constants

in case statements CR-314
values of, displaying CR-147, CR-162

contention checking CR-84
context menu

List window GR-155
context menus

Library tab UM-61
context sensitivity UM-501
control function, SystemC UM-192
control_foreign_signal() function UM-183
conversion, radix CR-241
convert real to time UM-99
convert time to real UM-98
coverage

merging data UM-354
saving raw data UM-354
see also Code Coverage
see also functional coverage

coverage clear command CR-128
coverage exclude command CR-129
coverage reload command CR-131
coverage report command CR-132
Coverage Report dialog GR-90
coverage reports UM-350

reporting all signals UM-345
sample reports UM-352
xml format UM-351

coverage save command CR-135
$coverage_save system function UM-152
CoverAtLeast .ini file variable UM-531
CoverEnable .ini file variable UM-531
CoverLimit .ini file variable UM-531
CoverLog .ini file variable UM-531
CoverWeight .ini file variable UM-531
covreport.xsl UM-351
CppOptions .ini file variable (sccom) UM-528
CppPath .ini file variable (sccom) UM-528
Create a New Library dialog GR-38
Create Project dialog GR-37
Create Project File dialog GR-43
current exclusions

pragmas UM-347
Current Exclusions pane GR-121
cursors

adding, deleting, locking, naming UM-245
link to Dataflow window UM-302
measuring time with UM-245
trace events with UM-306
Wave window UM-245

Customize Toolbar dialog GR-106
customizing

adding buttons CR-45
via preference variables GR-266

Index
D

deltas
explained UM-80

data types
Code Coverage UM-335

database, functional coverage, saving UM-395
Dataflow Options dialog GR-140
Dataflow Page Setup dialog GR-138
Dataflow window UM-300, GR-128

automatic cell hiding GR-140, GR-141
menu bar GR-129
options GR-140, GR-141
pan UM-305
zoom UM-305
see also windows, Dataflow window

dataflow.bsm file UM-313
dataset alias command CR-136
Dataset Browser UM-229, GR-49

dialog GR-49
dataset clear command CR-137
dataset close command CR-138
dataset info command CR-139
dataset list command CR-140
dataset open command CR-141
dataset rename command CR-142, CR-143
Dataset Snapshot UM-231
dataset snapshot command CR-144
datasets UM-225

environment command, specifying with CR-161
managing UM-229
openingdialogs

Open File GR-39
reference UM-272
restrict dataset prefix display UM-230
test UM-273

DatasetSeparator .ini file variable UM-531
debuggable SystemC objects UM-176
debugging

C code UM-399
debugging the design, overview UM-26
declarations, hiding implicit with explicit CR-318
default binding

BindAtCompile .ini file variable UM-527
disabling UM-79

default binding rules UM-79
default clock UM-368
Default editor, changing UM-521
DefaultForceKind .ini file variable UM-531
DefaultRadix .ini file variable UM-531
DefaultRestartOptions variable UM-531, UM-539

defaults
restoring UM-520

+define+ CR-359
Define Clock dialog GR-188
definition (ID) of memory GR-170
delay

delta delays UM-80
interconnect CR-378
modes for Verilog models UM-144
SDF files UM-439
stimulus delay, specifying GR-187

+delay_mode_distributed CR-359
+delay_mode_path CR-359
+delay_mode_unit CR-359
+delay_mode_zero CR-360
’delayed CR-24
DelayFileOpen .ini file variable UM-532
delaying test signal, Waveform Comparison GR-244
delete command CR-146
deleting library contents UM-61
delta collapsing UM-232
delta simulator state variable UM-542
deltas

collapsing in the List window GR-163
collapsing in WLF files CR-382
hiding in the List window CR-124, GR-163
in List window UM-265
referencing simulator iteration

as a simulator state variable UM-542
dependencies, checking CR-328
dependent design units UM-73
describe command CR-147
descriptions of HDL items GR-203
design library

creating UM-60
logical name, assigning UM-62
mapping search rules UM-63
resource type UM-58
VHDL design units UM-73
working type UM-58

design object icons, described GR-12
Design Optimization dialog GR-70
design portability and SystemC UM-168
design units UM-58

report of units simulated CR-426
Verilog

adding to a library CR-358
details

code coverage GR-123
dialogs GR-49

Add file to Project GR-44

Index
Add Folder GR-47
C Debug setup GR-99
Change Memory GR-179
Change Selected Variable GR-167
Combine Selected Signals GR-161
Compare Memory GR-181
Compile Order GR-69
Compiler Options GR-60
Configure cover directives GR-149
Coverage Report GR-90
Create a New Library GR-38
Create Project GR-37
Create Project File GR-43
Customize Toolbar GR-106
Dataflow Options GR-140
Dataflow Page Setup GR-138
Define Clock GR-188
Design Optimization GR-70
File Breakpoint GR-98
Filter instance list GR-92
Find in Assertions GR-113
Find in dataflow GR-139
Find in FCovers GR-148
Find in List GR-156
Find in Locals GR-168
Find in memory GR-182
Find in Process GR-109
Force Selected Signal GR-186
Functional coverage filter GR-151
Functional coverage reload GR-145
Functional coverage report GR-146
List Signal Properties GR-159
List Signal Search GR-157
Load Coverage Data GR-89
Macro GR-102
Modify Breakpoints GR-95
Modify Display Properties GR-162
Optimization Configuration GR-45
Preferences GR-104
Print GR-135
Print Postscript GR-137
Profile Report GR-93, GR-197
Project Compiler Settings GR-50
Project Settings GR-57
Properties (memory) GR-183
Restart GR-88
Runtime Options GR-85
Save Memory GR-177
Signal Breakpoints GR-97
Simulation Configuration GR-46
Start Simulation GR-76

SystemC Link dialog GR-68
directories

mapping libraries CR-370
moving libraries UM-63

directory, changing, disabled GR-21
disable_menu command CR-149
disable_menuitem command CR-150
disablebp command CR-148
distributed delay mode UM-145
dividers

adding from command line CR-52
Wave window UM-256

DLL files, loading UM-568, UM-574
do command CR-151
DO files (macros) CR-151

error handling UM-490
executing at startup UM-521, UM-534
parameters, passing to UM-487
Tcl source command UM-491

docking
window panes GR-258

documentation UM-35
DOPATH environment variable UM-521
down command CR-152
DPI

export TFs UM-551
DPI export TFs UM-551
DPI use flow UM-566
drag & drop preferences GR-103
drivers

Dataflow Window UM-303
show in Dataflow window UM-269
Wave window UM-269

drivers command CR-154
drivers, multiple on unresolved signal GR-53, GR-62
dump files, viewing in ModelSim CR-310
dumplog64 command CR-155
dumpports tasks, VCD files UM-461

E

echo command CR-156
edges, finding CR-189, CR-250
edit command CR-157
Editing

in notepad windows UM-605
in the Main window UM-605
in the Source window UM-605

EDITOR environment variable UM-521
editor, default, changing UM-521

Index
elab_defer_fli argument UM-84, UM-140
elaboration file

creating UM-83, UM-139
loading UM-83, UM-139
modifying stimulus UM-83, UM-139
resimulating the same design UM-82, UM-138
simulating with PLI or FLI models UM-84, UM-

140
elaboration, interrupting CR-373
embedded wave viewer UM-304
empty port name warning UM-551
enable_menu command CR-159
enable_menuitem command CR-160
enablebp command CR-158
encryption

+protect argument CR-365
‘protect compiler directive UM-155
-nodebug argument (vcom) CR-314
-nodebug argument (vlog) CR-363
securing pre-compiled libraries UM-70

end_of_construction() function UM-183
end_of_simulation() function UM-183
ENDFILE function UM-91
ENDLINE function UM-91
endpoint directives

clocking and UM-371
restrictions on UM-371

endpoints, PSL directive UM-398
‘endprotect compiler directive UM-155
entities

default binding rules UM-79
entities, specifying for simulation CR-390
entity simulator state variable UM-542
enumerated types

user defined CR-354
environment command CR-161
environment variables UM-521

accessed during startup UM-613
reading into Verilog code CR-359
referencing from ModelSim command line UM-523
referencing with VHDL FILE variable UM-523
setting in Windows UM-522
specifying library locations in modelsim.ini file

UM-525
specifying UNIX editor CR-157
state of CR-224
TranscriptFile, specifying location of UM-534
used in Solaris linking for FLI UM-568, UM-574
using in pathnames CR-15
using with location mapping UM-67
variable substitution using Tcl UM-479

environment, displaying or changing pathname CR-161
error

can’t locate C compiler UM-551
Error .ini file variable UM-536
errors

bad magic number UM-227
during compilation, locating GR-264
getting details about messages CR-329
getting more information UM-546
libswift entry not found UM-555
multiple definition UM-186
onerror command CR-216
out-of-line function UM-186
SDF, disabling CR-380
SystemC loading UM-184
Tcl_init error UM-552
void function UM-186
VSIM license lost UM-555

errors, changing severity of UM-546
escape character CR-15
event order

changing in Verilog CR-358
in optimized designs UM-128
in Verilog simulation UM-132

event queues UM-132
event watching commands, placement of UM-487
events, tracing UM-306
examine command CR-162
examine tooltip

toggling on/off GR-256
exclusion filter files UM-348

excluding udp truth table rows UM-349
exclusions

lines and files UM-347
exit codes UM-549
exit command CR-166
expand net UM-303
Explicit .ini file variable UM-527
export TFs, in DPI UM-551
Exporting SystemC modules

to Verilog UM-214
exporting SystemC modules

to VHDL UM-223
exporting top SystemC module UM-165
Expression Builder UM-253

configuring a List trigger with UM-266
saving expressions to Tcl variable UM-253

extended identifiers CR-16
in mixed designs UM-203, UM-222

Index
F

-f CR-360
F8 function key UM-607
-fast CR-360
fcover clear command CR-167
fcover comment command CR-168
fcover configue command CR-169
fcover reload command CR-171
fcover report command CR-173
fcover save command CR-175
features, new UM-499
field descriptions

coverage reports UM-352
FIFOs, viewing SystemC UM-181
File Breakpoint dialog GR-98
File compression

VCD tasks UM-462
file compression

SDF files UM-439
VCD files CR-295, CR-304

file format
MTI memory data GR-178

file I/O
splitio command CR-270
TextIO package UM-88
VCD files UM-455

file-line breakpoints GR-203
files

opening in GUI GR-39
files, grouping for compile UM-47
filter

processes GR-108
Filter instance list dialog GR-92
filtering signals in Objects window GR-185
filters

for Code Coverage UM-348
find command CR-176
Find in Assertions dialog GR-113
Find in dataflow dialog GR-139
Find in FCovers dialog GR-148
Find in List dialog GR-156
Find in Locals dialog GR-168
Find in memory dialog GR-182
Find in Process dialog GR-109
Find in Transcript dialog

dialogs
Find in Transcript GR-48

fixed point types UM-182
FLI UM-100

debugging UM-399

folders, in projects UM-50
font scaling

for dual monitors GR-28
fonts

controlling in X-sessions GR-13
scaling GR-13

force command CR-180
defaults UM-539

Force Selected Signal dialog GR-186
foreign language interface UM-100
foreign model loading

SmartModels UM-618
foreign module declaration

Verilog example CR-259, UM-210
VHDL example UM-218

foreign module declaration, SystemC UM-209
format file UM-261

List window CR-422
Wave window CR-422, UM-261

FPGA libraries, importing UM-69
function calls, identifying with C Debug UM-407
Functional coverage

merging databases offline CR-320
functional coverage

AtLeast counts UM-387
comments in the database CR-168
compiling and simulating UM-385
configuring directives CR-169
described UM-360
merging statistics CR-171, UM-396
reloading CR-171, UM-396
reporting CR-173, UM-391
saving database CR-175, UM-395
weighting directives UM-387

Functional coverage filter dialog GR-151
Functional coverage reload dialog GR-145
Functional coverage report dialog GR-146
functions

SystemC
control UM-192
observe UM-192
unsupported UM-182

G

-g C++ compiler option UM-178
g++, alternate installations UM-168
gate-level designs

optimizing UM-127
gdb

Index
setting source directory CR-183
gdb debugger UM-400
gdb dir command CR-183
generate statements, Veilog UM-123
GenerateFormat .ini file variable UM-532
generic support

SystemC instantiating VHDL UM-218
generics

assigning or overriding values with -g and -G CR-
375

examining generic values CR-162
limitation on assigning composite types CR-376
VHDL UM-195

get_resolution() VHDL function UM-96
getactivecursortime command CR-184
getactivemarkertime command CR-185
glitches

disabling generation
from command line CR-384
from GUI GR-78

global visibility
PLI/FLI shared objects CR-376, UM-581

GlobalSharedObjectsList .ini file variable UM-532
graphic interface UM-237, UM-299, GR-9

UNIX support UM-29
grayed-out menu options UM-501
grouping files for compile UM-47
grouping objects, Monitor window GR-209
GUI preferences, saving GR-266
GUI_expression_format CR-22

GUI expression builder UM-253
syntax CR-23

H

hardware model interface UM-628
’hasX CR-24
Hazard .ini file variable (VLOG) UM-525
hazards

-hazards argument to vlog CR-361
-hazards argument to vsim CR-385
limitations on detection UM-135

help command CR-186
hierarchical reference support, SystemC UM-183
hierarchical references

SystemC/HDL designs UM-192
hierarchical references, mixed-language UM-190
hierarchy

driving signals in UM-419, UM-429
forcing signals in UM-97, UM-425, UM-434

referencing signals in UM-97, UM-422, UM-432
releasing signals in UM-97, UM-427, UM-436
viewing signal names without GR-255

highlighting, in Source window GR-205
history

of commands
shortcuts for reuse CR-19, UM-603

history command CR-187
hm_entity UM-629
HOME environment variable UM-521
HP aCC, restrictions on compiling with UM-169

I

I/O
splitio command CR-270
TextIO package UM-88
VCD files UM-455

icons
shapes and meanings GR-12

ieee .ini file variable UM-525
IEEE libraries UM-65
IEEE Std 1076 UM-30

differences between versions UM-75
IEEE Std 1364 UM-30, UM-113
IgnoreError .ini file variable UM-532
IgnoreFailure .ini file variable UM-532
IgnoreNote .ini file variable UM-532
IgnoreVitalErrors .ini file variable UM-527
IgnoreWarning .ini file variable UM-532
implicit operator, hiding with vcom -explicit CR-318
importing EVCD files, waveform editor GR-295
importing FPGA libraries UM-69
+incdir+ CR-361
incremental compilation

automatic UM-116
manual UM-116
with Verilog UM-115

index checking UM-74
indexed arrays, escaping square brackets CR-15
INF, in a coverage report UM-353
$init_signal_driver UM-429
init_signal_driver UM-419
$init_signal_spy UM-432
init_signal_spy UM-97, UM-422
init_usertfs function UM-412, UM-561
Initial dialog box, turning on/off UM-520
initialization of SystemC state-based code UM-175
initialization sequence UM-615
inlining

Index
Verilog modules UM-125
VHDL subprograms UM-74

instance
code coverage UM-334

instantiation in mixed-language design
Verilog from VHDL UM-203
VHDL from Verilog UM-207

instantiation in SystemC-Verilog design
SystemC from Verilog UM-214
Verilog from SystemC UM-209

instantiation in SystemC-VHDL design
VHDL from SystemC UM-217

instantiation in VHDL-SystemC design
SystemC from VHDL UM-222

interconnect delays CR-378, UM-451
annotating per Verilog 2001 CR-389

internal signals, adding to a VCD file CR-292
IOPATH

matching to specify path delays UM-445
iteration_limit, infinite zero-delay loops UM-81
IterationLimit .ini file variable UM-532

K

keyboard shortcuts
List window UM-608
Main window UM-605
Source window UM-605
Wave window UM-609

keywords
disabling 2001 keywords CR-366
enabling System Verilog keywords CR-365

L

-L work UM-118
language templates GR-201
language versions, VHDL UM-75
lecho command CR-188
left command CR-189
libraries

64-bit and 32-bit in same library UM-66
archives CR-356
creating UM-60
dependencies, checking CR-328
design libraries, creating CR-356, UM-60
design library types UM-58
design units UM-58
group use, setting up UM-63
IEEE UM-65

importing FPGA libraries UM-69
including precompiled modules GR-71, GR-80
listing contents CR-328
mapping

from the command line UM-62
from the GUI UM-62
hierarchically UM-537
search rules UM-63

modelsim_lib UM-96
moving UM-63
multiple libraries with common modules UM-118
naming UM-62
precompiled modules, including CR-361
predefined UM-64
refreshing library images CR-316, CR-365, UM-66
resource libraries UM-58
std library UM-64
Synopsys UM-65
vendor supplied, compatibility of CR-328
Verilog CR-386, UM-117, UM-194
VHDL library clause UM-64
working libraries UM-58
working vs resource UM-24
working with contents of UM-61

library map file, Verilog configurations UM-122
library mapping, overview UM-25
library maps, Verilog 2001 UM-122
library simulator state variable UM-542
library, definition in ModelSim UM-24
libsm UM-618
libswift UM-618

entry not found error UM-555
License .ini file variable UM-532
licensing

License variable in .ini file UM-532
linking SystemC source UM-172
lint-style checks CR-362
List Signal Properties dialog GR-159
List Signal Search dialog GR-157
List window UM-243, GR-153

adding items to CR-48
context menu GR-155
GUI changes UM-509
setting triggers UM-266
waveform comparison UM-281
see also windows, List window

LM_LICENSE_FILE environment variable UM-521
Load Coverage Data dialog GR-89
loading the design, overview UM-26
Locals window GR-166

see also windows, Locals window

Index
location maps, referencing source files UM-67
locations maps

specifying source files with UM-67
lock message UM-551
locking cursors UM-245
log command CR-191
log file

log command CR-191
nolog command CR-209
overview UM-225
QuickSim II format CR-413
redirecting with -l CR-377
virtual log command CR-343
virtual nolog command CR-346
see also WLF files

Logic Modeling
SmartModel

command channel UM-622
SmartModel Windows

lmcwin commands UM-623
memory arrays UM-624

long simulations
saving at intervals UM-231

lshift command CR-193
lsublist command CR-194

M

Macro dialog GR-102
macro_option command CR-195
MacroNestingLevel simulator state variable UM-542
macros (DO files) UM-487

breakpoints, executing at CR-76
creating from a saved transcript GR-17
depth of nesting, simulator state variable UM-542
error handling UM-490
executing CR-151
forcing signals, nets, or registers CR-180
parameters

as a simulator state variable (n) UM-542
passing CR-151, UM-487
total number passed UM-542

relative directories CR-151
shifting parameter values CR-266
Startup macros UM-538

.main clear command CR-43
Main window GR-14

code coverage UM-340
GUI changes UM-500
see also windows, Main window

manuals UM-35
mapping

data types UM-193
libraries

from the command line UM-62
hierarchically UM-537

symbols
Dataflow window UM-313

SystemC in mixed designs UM-202
SystemC to Verilog UM-199
SystemC to VHDL UM-202
Verilog states in mixed designs UM-194
Verilog states in SystemC designs UM-198
Verilog to SytemC, port and data types UM-198
Verilog to VHDL data types UM-193
VHDL to SystemC UM-196
VHDL to Verilog data types UM-195

mapping libraries, library mapping UM-62
mapping signals, waveform editor GR-295
master slave library (SystemC), including CR-256
math_complex package UM-65
math_real package UM-65
+maxdelays CR-362
mc_scan_plusargs()

using with an elaboration file UM-84, UM-140
mc_scan_plusargs, PLI routine CR-388
MDI frame UM-501, GR-17
MDI pane

tab groups GR-18
mem display command CR-196
mem list command CR-198
mem load command CR-199
mem save command CR-202
mem search command CR-204
memories

displaying the contents of GR-169
initializing GR-175
loading memory patterns GR-175
MTI memory data file GR-178
MTI’s definition of GR-170
navigating to memory locations GR-182
saving memory data to a file GR-177
selecting memory instances GR-171
sparse memory modeling UM-156
viewing contents GR-171
viewing multiple instances GR-171

memory
modeling in VHDL UM-101

memory allocation profiler UM-318
Memory Declaration, View menu UM-513
memory leak, cancelling scheduled events UM-108

Index
Memory window GR-169
GUI changes UM-510
modifying display GR-183
see also windows, Memory window

window
Memory window

see also Memory window
memory, displaying contents CR-196
memory, listing CR-198
memory, loading contents CR-199
memory, saving contents CR-202
memory, searching for patterns CR-204
menu options grayed-out UM-501
menus

Dataflow window GR-129
List window GR-154
Main window GR-20
Profiler windows GR-195
Source window GR-206
Wave window GR-216

merging coverage data UM-354, UM-396
merging coverage reports CR-320
messages UM-545

bad magic number UM-227
echoing CR-156
empty port name warning UM-551
exit codes UM-549
getting more information CR-329, UM-546
loading, disbling with -quiet CR-316, CR-365
lock message UM-551
long description UM-546
message system variables UM-536
metavalue detected UM-552
ModelSim message system UM-546
redirecting UM-534
sensitivity list warning UM-552
suppressing warnings from arithmetic packages

UM-538
Tcl_init error UM-552
too few port connections UM-554
turning off assertion messages UM-538
VSIM license lost UM-555
warning, suppressing UM-548

metavalue detected warning UM-552
MGC_LOCATION_MAP env variable UM-67
MGC_LOCATION_MAP variable UM-521
+mindelays CR-362
MinGW gcc UM-569, UM-575
missed coverage

branches GR-120
Missed Coverage pane GR-120

mixed-language simulation UM-188
access limitations UM-190

mnemonics, assigning to signal values CR-354
MODEL_TECH environment variable UM-521
MODEL_TECH_TCL environment variable UM-521
modeling memory in VHDL UM-101
ModelSim

commands CR-31–CR-432
modes of operation UM-27
simulation task overview UM-23
tool structure UM-22
verification flow UM-22

modelsim command CR-206
MODELSIM environment variable UM-521
modelsim.ini

found by ModelSim UM-615
default to VHDL93 UM-539
delay file opening with UM-539
environment variables in UM-537
force command default, setting UM-539
hierarchical library mapping UM-537
opening VHDL files UM-539
restart command defaults, setting UM-539
startup file, specifying with UM-538
transcript file created from UM-537
turning off arithmetic package warnings UM-538
turning off assertion messages UM-538

modelsim.tcl file GR-266
modelsim_lib UM-96

path to UM-525
MODELSIM_TCL environment variable UM-521
modes of operation, ModelSim UM-27
Modified field, Project tab UM-45
Modify Breakpoints dialog GR-95
Modify Display Properties dialog GR-162
modules

handling multiple, common names UM-118
with unnamed ports UM-206

Monitor window
adding items to CR-51
grouping/ungrouping objects GR-209

monitor window GR-208
add monitor command CR-51

monitors, dual, font scaling GR-28
mouse shortcuts

Main window UM-605
Source window UM-605
Wave window UM-609

.mpf file UM-38
loading from the command line UM-55
order of access during startup UM-612

Index
MTI memory data file GR-178
mti_cosim_trace environment variable UM-521
mti_inhibit_inline attribute UM-74
MTI_SYSTEMC macro UM-168
MTI_TF_LIMIT environment variable UM-522
multiclocked assertions UM-369
multiple document interface UM-501, GR-17
multiple drivers on unresolved signal GR-53, GR-62
Multiple simulations UM-225
multi-source interconnect delays CR-378

N

n simulator state variable UM-542
name case sensitivity, VHDL vs. Verilog CR-15
Name field

Project tab UM-45
name visibility in Verilog generates UM-123
names, modules with the same UM-118
negative pulses

driving an error state CR-388
Negative timing

$setuphold/$recovery UM-150
negative timing

algorithm for calculating delays UM-136
check limits UM-136
extending check limits CR-385

nets
Dataflow window, displaying in UM-300, GR-128
drivers of, displaying CR-154
readers of, displaying CR-242
stimulus CR-180
values of

displaying in Objects window GR-184
examining CR-162
saving as binary log file UM-226

waveforms, viewing GR-211
new features UM-499
next and previous edges, finding UM-610
next command CR-207
Nlview widget Symlib format UM-313
no space in time literal GR-53, GR-62
-no_risefall_delaynets CR-387
NoCaseStaticError .ini file variable UM-527
NoDebug .ini file variable (VCOM) UM-527
NoDebug .ini file variable (VLOG) UM-526
-nodebug argument (vcom) CR-314
-nodebug argument (vlog) CR-363
noforce command CR-208
NoIndexCheck .ini file variable UM-527

+nolibcell CR-363
nolog command CR-209
NOMMAP environment variable UM-522
non-blocking assignments UM-134
NoOthersStaticError .ini file variable UM-527
NoRangeCheck .ini file variable UM-527
Note .ini file variable UM-536
notepad command CR-211
Notepad windows, text editing UM-605
-notrigger argument UM-268
noview command CR-212
NoVital .ini file variable UM-527
NoVitalCheck .ini file variable UM-527
Now simulator state variable UM-542
now simulator state variable UM-542
+nowarn<CODE> CR-364
nowhen command CR-213
numeric_bit package UM-65
numeric_std package UM-65

disabling warning messages UM-538
NumericStdNoWarnings .ini file variable UM-533

O

object
defined UM-34

object_list_file, WLF files CR-416
Objects window GR-184

see also windows, Objects window
observe function, SystemC UM-192
observe_foreign_signal() function UM-183
onbreak command CR-214
onElabError command CR-215
onerror command CR-216
Open File dialog GR-39
opening files GR-39
operating systems supported, See Installation Guide
Optimization Configuration dialog GR-45
Optimization Configurations UM-49
optimizations

disabling for Verilog designs CR-364
disabling for VHDL designs CR-315
disabling process merging CR-311
gate-level designs UM-127
Verilog designs UM-124
VHDL subprogram inlining UM-74
via the gui GR-70
vopt command CR-371

optimize for std_logic_1164 GR-53, GR-62
Optimize_1164 .ini file variable UM-527

Index
optimizing Verilog designs
design object visibility UM-126
event order issues UM-128
timing checks UM-128

OptionFile entry in project files GR-56, GR-65
order of events

changing in Verilog CR-358
in optimized designs UM-128

ordering files for compile UM-46
organizing projects with folders UM-50
organizing windows, MDI pane GR-18
OSCI 2.1 features supported UM-183
OSCI simulator, differences from ModelSim UM-182
OSCI simulator, differences with vsim UM-182
others .ini file variable UM-525
overriding the simulator resolution UM-174
overview, simulation tasks in ModelSim UM-23

P

packages
standard UM-64
textio UM-64
util UM-96
VITAL 1995 UM-93
VITAL 2000 UM-93

page setup
Dataflow window UM-312
Wave window UM-262, GR-230

pan, Dataflow window UM-305
panes

docking and undocking GR-258
parameter support

SystemC instantiating Verilog UM-211
Verilog instantiating SystemC UM-214

parameters
making optional UM-488
using with macros CR-151, UM-487

path delay mode UM-145
path delays,matching to IOPATH statements UM-445
pathnames

comparisons UM-279
hiding in Wave window UM-255
in VSIM commands CR-12
spaces in CR-11

PathSeparator .ini file variable UM-533
pause command CR-217
PedanticErrors .ini file variable UM-527
performance

cancelling scheduled events UM-108

improving for Verilog simulations UM-124
vopt command CR-371

platforms supported, See Installation Guide
play command CR-218
PLI

loading shared objects with global symbol visibility
CR-376, UM-581

specifying which apps to load UM-562
Veriuser entry UM-562

PLI/VPI UM-158, UM-560
debugging UM-399
tracing UM-599

PLIOBJS environment variable UM-522, UM-562
pop command CR-219
popup

toggling waveform popup on/off UM-280, GR-256
Port driver data, capturing UM-467
ports, unnamed, in mixed designs UM-206
ports, VHDL and Verilog UM-193
Postscript

saving a waveform in UM-262
saving the Dataflow display in UM-310

power add command CR-220
power report command CR-221
power reset command CR-222
pragmas UM-347
precedence of variables UM-541
precision, simulator resolution UM-129, UM-191
pref.tcl file GR-266
Preference dialog GR-104
preference variables

.ini files, located in UM-524
editing GR-266
saving GR-266
Tcl files, located in GR-266

Preferences
drag and drop GR-103

preferences, saving GR-266
primitives, symbols in Dataflow window UM-313
Print dialog GR-135
Print Postscript dialog GR-137
printenv command CR-223, CR-224
printing

Dataflow window display UM-310
waveforms in the Wave window UM-262

Process window GR-143
see also windows, Process window

processes
optimizations, disabling merging CR-311
without wait statements GR-53, GR-62

profile clear command CR-225

Index
profile interval command CR-226
profile off command CR-227
profile on command CR-228
profile option command CR-229
profile reload command CR-230
profile report command CR-231, UM-331
Profile Report dialog GR-93, GR-197
Profiler UM-317

%parent fields UM-325
clear profile data UM-321
enabling memory profiling UM-319
enabling statistical sampling UM-321
getting started UM-319
handling large files UM-320
Hierarchical View UM-325
interpreting data UM-323
memory allocation UM-318
memory allocation profiling UM-321
profile report command UM-331
Profile Report dialog UM-332, GR-93
Ranked View UM-324
report option UM-331
reporting GR-93
results, viewing UM-324
statistical sampling UM-318
Structural View UM-326
unsupported on Opteron UM-317
view_profile command UM-324
viewing profile details UM-327

Programming Language Interface UM-158, UM-560
Project Compiler Settings dialog GR-50
Project Settings dialog GR-57
project tab

information in UM-45
sorting UM-45

Projects
MODELSIM environment variable UM-521

projects UM-37
accessing from the command line UM-55
adding files to UM-41
benefits UM-38
code coverage settings UM-338
compile order UM-46

changing UM-46
compiler properties in UM-52
compiling files UM-43
creating UM-40
creating simulation configurations UM-48
folders in UM-50
grouping files in UM-47
loading a design UM-44

override mapping for work directory with vcom CR-
256, CR-317

override mapping for work directory with vlog CR-
366

overview UM-38
propagation, preventing X propagation CR-378
Properties (memory) dialog GR-183
property list command CR-234
property wave command CR-235
Protect .ini file variable (VLOG) UM-526
‘protect compiler directive UM-155
protected types UM-101
PSL

assume directives UM-363
endpoint directives UM-398
standard supported UM-30

PSL assertions UM-359
see also assertions

pulse error state CR-388
push command CR-237
pwd command CR-238

Q

quick reference
table of ModelSim tasks UM-23

QuickSim II logfile format CR-413
Quiet .ini file variable

VCOM UM-527
Quiet .ini file variable (VLOG) UM-526
quietly command CR-239
quit command CR-240

R

race condition, problems with event order UM-132
radix

changing in Objects, Locals, Dataflow, List, and
Wave windows CR-241

character strings, displaying CR-354
default, DefaultRadix variable UM-531
List window UM-259
of signals being examined CR-163
of signals in Wave window CR-54
specifying in Memory window GR-183
Wave window UM-255

radix command CR-241
range checking UM-74

disabling CR-315
enabling CR-316

Index
readers and drivers UM-303
readers command CR-242
real type, converting to time UM-99
reative testbenches, PSL endpoints UM-398
rebuilding supplied libraries UM-65
reconstruct RTL-level design busses UM-234
record command CR-243
record field selection, syntax CR-13
records, values of, changing GR-167
$recovery UM-150
redirecting messages, TranscriptFile UM-534
reference region UM-275
refreshing library images CR-316, CR-365, UM-66
registered function calls UM-407
registers

values of
displaying in Objects window GR-184
saving as binary log file UM-226

waveforms, viewing GR-211
report

simulator control UM-520
simulator state UM-520

report command CR-244
reporting

code coverage UM-350
variable settings CR-17

RequireConfigForAllDefaultBinding variable UM-527
resolution

in SystemC simulation UM-174
mixed designs UM-191
overriding in SystemC UM-174
returning as a real UM-96
specifying with -t argument CR-380
verilog simulation UM-129
VHDL simulation UM-78

Resolution .ini file variable UM-533
resolution simulator state variable UM-542
resource libraries UM-64
restart command CR-246

defaults UM-539
in GUI GR-26
toolbar button GR-35, GR-127, GR-222

Restart dialog GR-88
restore command CR-248
restoring defaults UM-520
results, saving simulations UM-225
resume command CR-249
right command CR-250
RTL-level design busses

reconstructing UM-234
run command CR-252

RunLength .ini file variable UM-533
Runtime Options dialog GR-85

S

Save Memory dialog GR-177
saving

simulation options in a project UM-48
waveforms UM-225

saving simulations UM-86, UM-142
sc_argc() function UM-183
sc_argv() function UM-183
sc_clock() functions, moving UM-164
sc_cycle() function UM-182
sc_fifo UM-181
sc_foreign_module UM-217

and parameters UM-211
sc_initialize(), removing calls UM-182
sc_main() function UM-182
sc_main() function, converting UM-164
SC_MODULE_EXPORT macro UM-165
sc_set_time_resolution() function UM-182
sc_start() function UM-182
sc_start() function, replacing in SystemC UM-182
sc_start(), replacing for ModelSim UM-164
ScalarOpts .ini file variable UM-526, UM-527
scaling fonts GR-13
sccom

using sccom vs. raw C++ compiler UM-170
sccom command CR-254
sccom -link command UM-172, UM-223
sccomLogfile .ini file variable (sccom) UM-528
sccomVerbose .ini file variable (sccom) UM-528
scgenmod command CR-258
scgenmod, using UM-209, UM-217
-sclib command CR-389
scope, setting region environment CR-161
SCV library, including CR-255
SDF

controlling missing instance messages CR-380
disabling individual checks CR-275
disabling timing checks UM-451
errors and warnings UM-441
errors on loading, disabling CR-380
instance specification UM-440
interconnect delays UM-451
mixed VHDL and Verilog designs UM-450
specification with the GUI UM-441
troubleshooting UM-452
Verilog

Index
$sdf_annotate system task UM-444
optional conditions UM-449
optional edge specifications UM-448
rounded timing values UM-449
SDF to Verilog construct matching UM-445

VHDL
resolving errors UM-443
SDF to VHDL generic matching UM-442

warning messages, disabling CR-380
$sdf_done UM-152
search command CR-260
search libraries CR-386, GR-71, GR-80
searching

binary signal values in the GUI CR-29
Expression Builder UM-253
in the source window GR-204
List window

signal values, transitions, and names CR-22,
CR-152, CR-290

next and previous edge in Wave window CR-189,
CR-250

Verilog libraries UM-117, UM-207
Wave window

signal values, edges and names CR-189, CR-
250, GR-233

searchlog command CR-262
seetime command CR-264
sensitivity list warning UM-552
setenv command CR-265
$setuphold UM-150
severity, changing level for errors UM-546
shared library

building in SystemC UM-172, GR-25
shared objects

loading FLI applications
see ModelSim FLI Reference manual

loading PLI/VPI C applications UM-568
loading PLI/VPI C++ applications UM-574
loading with global symbol visibility CR-376, UM-

581
shift command CR-266
Shortcuts

text editing UM-605
shortcuts

command history CR-19, UM-603
command line caveat CR-18, UM-603
List window UM-608
Main window UM-605
Source window UM-605
Wave window UM-609

show command CR-267

show drivers
Dataflow window UM-303
Wave window UM-269

show source lines with errors GR-52, GR-61
Show_BadOptionWarning .ini file variable UM-526
Show_Lint .ini file variable (VLOG) UM-526, UM-527
Show_source .ini file variable

VCOM UM-528
Show_source .ini file variable (VLOG) UM-526
Show_VitalChecksWarning .ini file variable UM-528
Show_Warning1 .ini file variable UM-528
Show_Warning2 .ini file variable UM-528
Show_Warning3 .ini file variable UM-528
Show_Warning4 .ini file variable UM-528
Show_Warning5 .ini file variable UM-528
Show3DMem .ini file variable UM-533
ShowEnumMem .ini file variable UM-533
ShowIntMem .ini file variable UM-533
Signal Breakpoints dialog GR-97
signal interaction

Verilog and SystemC UM-196
Signal Spy UM-97, UM-422

overview UM-418
using in PSL assertions UM-367

$signal_force UM-434
signal_force UM-97, UM-425
$signal_release UM-436
signal_release UM-97, UM-427
signals

alternative names in the List window (-label) CR-48
alternative names in the Wave window (-label) CR-

53
applying stimulus to GR-186
attributes of, using in expressions CR-24
breakpoints CR-407
combining into a user-defined bus CR-53, UM-264
Dataflow window, displaying in UM-300, GR-128
drivers of, displaying CR-154
driving in the hierarchy UM-419
environment of, displaying CR-161
filtering in the Objects window GR-185
finding CR-176
force time, specifying CR-181
hierarchy

driving in UM-419, UM-429
referencing in UM-97, UM-422, UM-432
releasing anywhere in UM-427
releasing in UM-97, UM-436

log file, creating CR-191
names of, viewing without hierarchy GR-255
pathnames in VSIM commands CR-12

Index
radix
specifying for examine CR-163
specifying in List window CR-49
specifying in Wave window CR-54

readers of, displaying CR-242
sampling at a clock change UM-268
states of, displaying as mnemonics CR-354
stimulus CR-180
transitions, searching for UM-249
types, selecting which to view GR-185
unresolved, multiple drivers on GR-53, GR-62
values of

displaying in Objects window GR-184
examining CR-162
forcing anywhere in the hierarchy UM-97,

UM-425, UM-434
replacing with text CR-354
saving as binary log file UM-226

waveforms, viewing GR-211
Signals (Objects) window UM-514
SimulateAssumeDirectives .ini file variable UM-533
Simulating

Comparing simulations UM-225
simulating

batch mode UM-27
command-line mode UM-27
default run length GR-86
delays, specifying time units for CR-18
design unit, specifying CR-373
elaboration file UM-82, UM-138
graphic interface to GR-76
iteration limit GR-86
mixed language designs

compilers UM-190
libraries UM-190
resolution limit in UM-191

mixed Verilog and SystemC designs
channel and port type mapping UM-196
SystemC sc_signal data type mapping UM-197
Verilog port direction UM-198
Verilog state mapping UM-198

mixed Verilog and VHDL designs
Verilog parameters UM-193
Verilog state mapping UM-194
VHDL and Verilog ports UM-193
VHDL generics UM-195

mixed VHDL and SystemC designs
SystemC state mapping UM-202
VHDL port direction UM-201
VHDL port type mapping UM-200
VHDL sc_signal data type mapping UM-200

optimizing Verilog performance CR-360
saving dataflow display as a Postscript file UM-310
saving options in a project UM-48
saving simulations CR-191, CR-382, UM-225
saving waveform as a Postscript file UM-262
speeding-up with the Profiler UM-317
stepping through a simulation CR-272
stimulus, applying to signals and nets GR-186
stopping simulation in batch mode CR-410
SystemC UM-159, UM-173

usage flow for SystemC only UM-163
time resolution GR-77
Verilog UM-129

delay modes UM-144
hazard detection UM-135
optimizing performance UM-124
resolution limit UM-129
XL compatible simulator options UM-136

VHDL UM-78
viewing results in List window UM-243, GR-153
VITAL packages UM-95

simulating the design, overview UM-26
simulation

basic steps for UM-24
Simulation Configuration

creating UM-48
dialog GR-46

simulations
event order in UM-132
saving results CR-143, CR-144, UM-225
saving results at intervals UM-231
saving with checkpoint UM-86, UM-142

simulator resolution
mixed designs UM-191
returning as a real UM-96
SystemC UM-174
Verilog UM-129
VHDL UM-78
vsim -t argument CR-380

simulator state variables UM-542
simulator version CR-381, CR-392
simulator, ModelSim and OSCI differences UM-182
simultaneous events in Verilog

changing order CR-358
sizetf callback function UM-587
sm_entity UM-619
SmartModels

creating foreign architectures with sm_entity UM-
619

invoking SmartModel specific commands UM-622
linking to UM-618

Index
lmcwin commands UM-623
memory arrays UM-624
Verilog interface UM-625
VHDL interface UM-618

so, shared object file
loading PLI/VPI C applications UM-568
loading PLI/VPI C++ applications UM-574

software version GR-33
source balloon

C Debug GR-99
source code pragmas UM-347
source code, security UM-70, UM-155
source directory, setting from source window GR-21,

GR-206
source errors, locating during compilation GR-264
source files, referencing with location maps UM-67
source files, specifying with location maps UM-67
source highlighting, customizing GR-205
source libraries

arguments supporting UM-119
source lines with errors

showing GR-52, GR-61
Source window GR-199

code coverage data UM-341
colorization GR-205
tab stops in GR-205
see also windows, Source window

source-level debug
SystemC, enabling UM-178

spaces in pathnames CR-11
sparse memories

listing with write report CR-426
sparse memory modeling UM-156
SparseMemThreshhold .ini file variable UM-526
specify path delays CR-388

matching to IOPATH statements UM-445
speeding-up the simulation UM-317
splitio command CR-270
square brackets, escaping CR-15
stability checking

disabling CR-91
enabling CR-92

Standard Developer’s Kit User Manual UM-35
standards supported UM-30
Start Simulation dialog GR-76
start_of_simulation() function UM-183
Startup

macros UM-538
startup

alternate to startup.do (vsim -do) CR-374
environment variables access during UM-613

files accessed during UM-612
macro in the modelsim.ini file UM-534
startup macro in command-line mode UM-27
using a startup file UM-538

Startup .ini file variable UM-534
state variables UM-542
statistical sampling profiler UM-318
status bar

Main window GR-19
status command CR-271
Status field

Project tab UM-45
std .ini file variable UM-525
std_arith package

disabling warning messages UM-538
std_developerskit .ini file variable UM-525
Std_logic

mapping to binary radix CR-29
std_logic_arith package UM-65
std_logic_signed package UM-65
std_logic_textio UM-65
std_logic_unsigned package UM-65
StdArithNoWarnings .ini file variable UM-534
STDOUT environment variable UM-522
step command CR-272
steps for simulation, overview UM-24
stimulus

applying to signals and nets GR-186
modifying for elaboration file UM-83, UM-139

stop command CR-273
struct of sc_signal<T> UM-180
subprogram inlining UM-74
subprogram write is ambiguous error, fixing UM-90
Support UM-36
Suppress .ini file variable UM-536
symbol mapping

Dataflow window UM-313
symbolic constants, displaying CR-354
symbolic link to design libraries (UNIX) UM-63
symbolic names, assigning to signal values CR-354
Synopsis hardware modeler UM-628
synopsys .ini file variable UM-525
Synopsys libraries UM-65
syntax highlighting GR-205
synthesis

rule compliance checking CR-312, UM-527, GR-
52, GR-61

system calls
VCD UM-461
Verilog UM-146

system commands UM-479

Index
system tasks
VCD UM-461
Verilog UM-146
Verilog-XL compatible UM-150

system tasks and functions
ModelSim Verilog UM-152

System Verilog
enabling with -sv argument CR-365

SystemC
aggregates of signals/ports UM-180
class and structure member naming syntax CR-13
compiling for source level debug UM-167
compiling optimized code UM-167
component declaration for instantiation UM-223
control function UM-192
converting sc_main() UM-164
exporting sc_main, example UM-165
exporting top level module UM-165
foreign module declaration UM-209
generic support, instantiating VHDL UM-218
hierarchical reference support UM-183
hierarchical references in mixed designs UM-192
instantiation criteria in Verilog design UM-214
instantiation criteria in VHDL design UM-222
Link dialog GR-68
linking the compiled source UM-172
maintaining design portability UM-168
mapping states in mixed designs UM-202

VHDL UM-202
master slave library, including CR-256
mixed designs with Verilog UM-188
mixed designs with VHDL UM-188
observe function UM-192
parameter support, Verilog instances UM-211
prim channel aggregates UM-180
replacing sc_start() UM-164
sc_clock(), moving to SC_CTOR UM-164
sc_fifo UM-181
simulating UM-173
source code, modifying for ModelSim UM-164
specifying shared library path, command CR-389
stack space for threads UM-184
state-based code, initializing and cleanup UM-175
troubleshooting UM-184
unsupported functions UM-182
verification library, including CR-255
viewable/debuggable objects UM-176
viewing FIFOs UM-181
virtual functions UM-175

SystemC modules
exporting for use in Verilog UM-214

exporting for use in VHDL UM-223
SystemVerilog UM-30
SystemVerilog DPI

registering DPIapplications UM-565
specifying the DPI file to load UM-580

T

tab groups GR-18
tab stops

Source window GR-205
tb command CR-274
tcheck_set command CR-275
tcheck_status command CR-277
Tcl UM-472–UM-482

command separator UM-478
command substitution UM-477
command syntax UM-474
evaluation order UM-478
history shortcuts CR-19, UM-603
Man Pages in Help menu GR-33
preference variables GR-266
relational expression evaluation UM-478
time commands UM-481
variable

in when commands CR-408
substitution UM-479

VSIM Tcl commands UM-480
Tcl_init error message UM-552
Technical support and updates UM-36
temp files, VSOUT UM-523
test signal

delaying GR-244
testbench, accessing internal objectsfrom UM-417
testbenches

PSL endpoint reactivity UM-398
text and command syntax UM-34
Text editing UM-605
TEXTIO

buffer, flushing UM-92
TextIO package

alternative I/O files UM-92
containing hexadecimal numbers UM-91
dangling pointers UM-91
ENDFILE function UM-91
ENDLINE function UM-91
file declaration UM-88
implementation issues UM-90
providing stimulus UM-92
standard input UM-89

Index
standard output UM-89
WRITE procedure UM-90
WRITE_STRING procedure UM-90

TF routines UM-593, UM-595
TFMPC

disabling warning CR-387
explanation UM-554

time
absolute, using @ CR-18
measuring in Wave window UM-245
resolution in SystemC UM-174
simulation time units CR-18
time resolution as a simulator state variable UM-542

time collapsing CR-382, UM-232
time literal, missing space GR-53, GR-62
time resolution

in mixed designs UM-191
in Verilog UM-129
in VHDL UM-78
setting

with the GUI GR-77
with vsim command CR-380

time type
converting to real UM-98

time, time units, simulation time CR-18
timescale directive warning

disabling CR-387
investigating UM-130

timing
$setuphold/$recovery UM-150
annotation UM-439
differences shown by comparison UM-279
disabling checks CR-364, UM-451
disabling checks for entire design CR-379
disabling individual checks CR-275
in optimized designs UM-128
negative check limits

described UM-136
extending CR-385

status of individual checks CR-277
title, Main window, changing CR-381
TMPDIR environment variable UM-522
to_real VHDL function UM-98
to_time VHDL function UM-99
toggle add command CR-279
toggle coverage

excluding signals CR-281
toggle disable command CR-281
toggle enable command CR-282
toggle report command CR-283
toggle reset command CR-284

toggle statistics
enabling CR-279
reporting CR-283
resetting CR-284

toggling waveform popup on/off UM-280, GR-256
tolerance

leading edge UM-276
trailing edge UM-276

too few port connections, explanation UM-554
toolbar

Dataflow window GR-132
Main window GR-34
Wave window GR-220
waveform editor GR-222

tooltip, toggling waveform popup GR-256
tracing

events UM-306
source of unknown UM-307

transcribe command CR-285
transcript

clearing CR-43
disable file creation UM-537, GR-17
file name, specifed in modelsim.ini UM-537
redirecting with -l CR-377
reducing file size CR-287
saving GR-16
using as a DO file GR-17

transcript command CR-286
transcript file command CR-287
TranscriptFile .ini file variable UM-534
transitions, signal, finding CR-189, CR-250
TreeUpdate command CR-423
triggers, in the List window UM-266
triggers, in the List window, setting UM-265, GR-163
troubleshooting

SystemC UM-184
unexplained behaviors, SystemC UM-184

TSCALE, disabling warning CR-387
TSSI CR-429

in VCD files UM-467
tssi2mti command CR-288
type

converting real to time UM-99
converting time to real UM-98

Type field, Project tab UM-45
types, fixed point in SystemC UM-182

Index
U

-u CR-365
unbound component GR-53, GR-62
UnbufferedOutput .ini file variable UM-534
undeclared nets, reporting an error CR-362
undefined symbol, error UM-184
unexplained behavior during simulation UM-184
unexplained simulation behavior UM-184
ungrouping objects, Monitor window GR-209
unit delay mode UM-145
unknowns, tracing UM-307
unnamed ports, in mixed designs UM-206
unresolved signals, multiple drivers on GR-53, GR-62
unsetenv command CR-289
unsupported functions in SystemC UM-182
up command CR-290
UpCase .ini file variable UM-526
use 1076-1993 language standard GR-51, GR-60
use clause, specifying a library UM-64
use explicit declarations only GR-52, GR-61
use flow

Code Coverage UM-334
SystemC-only designs UM-163

UseCsupV2 .ini file variable UM-534
user hook Tcl variable GR-107
user-defined bus CR-53, UM-233, UM-264
UserTimeUnit .ini file variable UM-534
UseScv .ini file variable (sccom) UM-528
util package UM-96

V

-v CR-366
v2k_int_delays CR-389
values

describe HDL items CR-147
examine HDL item values CR-162
of HDL items GR-203
replacing signal values with strings CR-354

variable settings report CR-17
variables

describing CR-147
environment variables UM-521
LM_LICENSE_FILE UM-521
personal preferences UM-520
precedence between .ini and .tcl UM-541
reading from the .ini file UM-536
referencing in commands CR-17
setting environment variables UM-521

simulator state variables
current settings report UM-520
iteration number UM-542
name of entity or module as a variable UM-542
resolution UM-542
simulation time UM-542

value of
changing from command line CR-81
changing with the GUI GR-167
examining CR-162

values of
displaying in Objects window GR-184
saving as binary log file UM-226

Variables (Locals) window UM-518
variables, Tcl, user hook GR-107
vcd add command CR-292
vcd checkpoint command CR-293
vcd comment command CR-294
vcd dumpports command CR-295
vcd dumpportsall command CR-297
vcd dumpportsflush command CR-298
vcd dumpportslimit command CR-299
vcd dumpportsoff command CR-300
vcd dumpportson command CR-301
vcd file command CR-302
VCD files UM-455

adding items to the file CR-292
capturing port driver data CR-295, UM-467
case sensitivity UM-456
converting to WLF files CR-310
creating CR-292, UM-456
dumping variable values CR-293
dumpports tasks UM-461
flushing the buffer contents CR-306
from VHDL source to VCD output UM-463
generating from WLF files CR-415
inserting comments CR-294
internal signals, adding CR-292
specifying maximum file size CR-307
specifying name of CR-304
specifying the file name CR-302
state mapping CR-302, CR-304
stimulus, using as UM-458
supported TSSI states UM-467
turn off VCD dumping CR-308
turn on VCD dumping CR-309
VCD system tasks UM-461
viewing files from another tool CR-310

vcd files command CR-304
vcd flush command CR-306
vcd limit command CR-307

Index
vcd off command CR-308
vcd on command CR-309
vcd2wlf command CR-310
vcom

enabling code coverage UM-337
vcom command CR-311
vcover command UM-354
vcover convert command CR-319
vcover merge command CR-320
vcover report command CR-322
vdel command CR-327
vdir command CR-328
vector elements, initializing CR-81
vendor libraries, compatibility of CR-328
Vera, see Vera documentation
Verilog

ACC routines UM-591
capturing port driver data with -dumpports CR-302,

UM-467
cell libraries UM-144
compiler directives UM-153
compiling and linking PLI C applications UM-568
compiling and linking PLI C++ applications UM-

574
compiling design units UM-114
compiling with XL ’uselib compiler directive UM-

120
component declaration UM-204
configurations UM-122
event order in simulation UM-132
generate statements UM-123
instantiation criteria in mixed-language design UM-

203
instantiation criteria in SystemC design UM-209
instantiation of VHDL design units UM-207
language templates GR-201
library usage UM-117
mapping states in mixed designs UM-194
mapping states in SystemC designs UM-198
mixed designs with SystemC UM-188
mixed designs with VHDL UM-188
parameter support, instantiating SystemC UM-214
parameters UM-193
port direction UM-198
sc_signal data type mapping UM-197
SDF annotation UM-444
sdf_annotate system task UM-444
simulating UM-129

delay modes UM-144
XL compatible options UM-136

simulation hazard detection UM-135

simulation resolution limit UM-129
SmartModel interface UM-625
source code viewing GR-199
standards UM-30
system tasks UM-146
TF routines UM-593, UM-595
to SystemC, channel and port type mapping UM-

196
XL compatible compiler options UM-119
XL compatible routines UM-597
XL compatible system tasks UM-150

verilog .ini file variable UM-525
Verilog 2001

disabling support CR-366, UM-526
Verilog PLI/VPI

64-bit support in the PLI UM-598
compiling and linking PLI/VPI C applications UM-

568
compiling and linking PLI/VPI C++ applications

UM-574
debugging PLI/VPI code UM-599
PLI callback reason argument UM-585
PLI support for VHDL objects UM-590
registering PLI applications UM-561
registering VPI applications UM-563
specifying the PLI/VPI file to load UM-580

Verilog-XL
compatibility with UM-111, UM-559

Veriuser .ini file variable UM-534, UM-562
Veriuser, specifying PLI applications UM-562
veriuser.c file UM-589
verror command CR-329
version

obtaining via Help menu GR-33
obtaining with vsim command CR-381
obtaining with vsim<info> commands CR-392

vgencomp command CR-330
VHDL

compiling design units UM-73
creating a design library UM-73
delay file opening UM-539
dependency checking UM-73
field naming syntax CR-13
file opening delay UM-539
foreign language interface UM-100
hardware model interface UM-628
instantiation criteria in SystemC design UM-217
instantiation from Verilog UM-207
instantiation of Verilog UM-193
language templates GR-201
language versions UM-75

Index
library clause UM-64
mixed designs with SystemC UM-188
mixed designs with Verilog UM-188
object support in PLI UM-590
optimizations

inlining UM-74
port direction UM-201
port type mapping UM-200
sc_signal data type mapping UM-200
simulating UM-78
SmartModel interface UM-618
source code viewing GR-199
standards UM-30
timing check disabling UM-78
VITAL package UM-65

VHDL utilities UM-96, UM-97, UM-422, UM-432
get_resolution() UM-96
to_real() UM-98
to_time() UM-99

VHDL-1987, compilation problems UM-75
VHDL-1993, enabling support for CR-311, UM-528
VHDL-2002, enabling support for CR-311, UM-528
VHDL93 .ini file variable UM-528
view command CR-332
view_profile command UM-324
viewing

library contents UM-61
waveforms CR-382, UM-225

viewing FIFOs UM-181
virtual count commands CR-334
virtual define command CR-335
virtual delete command CR-336
virtual describe command CR-337
virtual expand commands CR-338
virtual function command CR-339
virtual functions in SystemC UM-175
virtual hide command CR-342, UM-234
virtual log command CR-343
virtual nohide command CR-345
virtual nolog command CR-346
virtual objects UM-233

virtual functions UM-234
virtual regions UM-235
virtual signals UM-233
virtual types UM-235

virtual region command CR-348, UM-235
virtual regions

reconstruct the RTL hierarchy in gate-level design
UM-235

virtual save command CR-349, UM-234
virtual show command CR-350

virtual signal command CR-351, UM-233
virtual signals

reconstruct RTL-level design busses UM-234
reconstruct the original RTL hierarchy UM-234
virtual hide command UM-234

virtual type command CR-354
visibility

column in structure tab UM-228
VITAL

compiling and simulating with accelerated VITAL
packages UM-95

compliance warnings UM-94
disabling optimizations for debugging UM-95
specification and source code UM-93
VITAL packages UM-93

vital95 .ini file variable UM-525
vlib command CR-356
vlog

enabling code coverage UM-337
vlog command CR-358
vlog.opt file GR-56, GR-65
vlog95compat .ini file variable UM-526
vmake command CR-369
vmap command CR-370
vopt

gui access GR-70
vopt command CR-371, UM-124
VoptFlow .ini file variable UM-534
VPI, registering applications UM-563
VPI/PLI UM-158, UM-560

compiling and linking C applications UM-568
compiling and linking C++ applications UM-574

vsim build date and version CR-392
vsim command CR-373
VSIM license lost UM-555
vsim, differences with OSCI simulator UM-182
VSOUT temp file UM-523

W

Warning .ini file variable UM-536
WARNING[8], -lint argument to vlog CR-362
warnings

changing severity of UM-546
disabling at time 0 UM-538
empty port name UM-551
exit codes UM-549
getting more information UM-546
messages, long description UM-546
metavalue detected UM-552

Index
SDF, disabling CR-380
suppressing VCOM warning messages CR-315,

UM-548
suppressing VLOG warning messages CR-364,

UM-548
suppressing VSIM warning messages CR-387, UM-

548
Tcl initialization error 2 UM-552
too few port connections UM-554
turning off warnings from arithmetic packages UM-

538
waiting for lock UM-551

watching a signal value GR-208
watching signal values CR-51
wave commands CR-394
wave create command CR-397
wave edit command CR-400
wave export command CR-403
wave import command CR-404
Wave Log Format (WLF) file UM-225
wave log format (WLF) file CR-382

of binary signal values CR-191
see also WLF files

wave modify command CR-405
wave viewer, Dataflow window UM-304
Wave window UM-240, GR-211

adding items to CR-52
compare waveforms UM-279
docking and undocking UM-241, GR-212
in the Dataflow window UM-304
saving layout UM-261
toggling waveform popup on/off UM-280, GR-256
values column UM-280
see also windows, Wave window

WaveActivateNextPane command CR-423
Waveform Compare

created waveforms, using with GR-296
Waveform Comparison CR-94

add region UM-275
adding signals UM-274
clocked comparison UM-276
compare by region UM-275
compare by signal UM-274
compare options UM-278
compare tab UM-273
comparison method UM-276
comparison method tab UM-276
delaying the test signal GR-244
difference markers UM-279
flattened designs UM-283
hierarchical designs UM-283

icons UM-281
introduction UM-270
leading edge tolerance UM-276
List window display UM-281
pathnames UM-279
reference dataset UM-272
reference region UM-275
test dataset UM-273
timing differences UM-279
trailing edge tolerance UM-276
values column UM-280
Wave window display UM-279

Waveform Editor
Waveform Compare, using with GR-296

waveform editor
creating waveforms GR-289
creating waves CR-397
editing commands CR-400
editing waveforms GR-290
importing vcd stimulus file CR-404
mapping signals GR-295
modifying existing waves CR-405
saving stimulus files GR-294
saving waves CR-403
simulating GR-293
toolbar buttons GR-222

waveform logfile
log command CR-191
overview UM-225
see also WLF files

waveform popup UM-280, GR-256
waveforms UM-225

optimize viewing of UM-535
optimizing viewing of CR-382
saving and viewing CR-191, UM-226
viewing GR-211

WaveRestoreCursors command CR-423
WaveRestoreZoom command CR-423
WaveSignalNameWidth .ini file variable UM-534
weighting, coverage directives UM-387
Welcome dialog, turning on/off UM-520
when command CR-407
when statement

time-based breakpoints CR-411
where command CR-412
wildcard characters

for pattern matching in simulator commands CR-17
Windows

Main window
text editing UM-605

Source window

Index
text editing UM-605
windows

Active Processes pane GR-108
buttons, adding to GR-106
code coverage statistics UM-340
Dataflow window UM-300, GR-128

toolbar GR-132
zooming UM-305

Functional coverage browser GR-143
List window UM-243, GR-153

display properties of UM-259
formatting HDL items UM-259
output file CR-424
saving data to a file UM-263
saving the format of CR-422
setting triggers UM-265, UM-266, GR-163

Locals window GR-166
Main window GR-14

adding user-defined buttons CR-45
status bar GR-19
time and delta display GR-19
toolbar GR-34

Memory window GR-169
monitor GR-208
Objects window GR-184
opening

from command line CR-332
with the GUI GR-23

Process window GR-143
specifying next process to be executed GR-143
viewing processing in the region GR-143

Signals window
VHDL and Verilog items viewed in GR-184

Source window GR-199
viewing HDL source code GR-199

Variables window
VHDL and Verilog items viewed in GR-166

Wave window UM-240, GR-211
adding HDL items to UM-244
cursor measurements UM-245
display properties UM-255
display range (zoom), changing UM-249
format file, saving UM-261
path elements, changing CR-125, UM-534
time cursors UM-245
zooming UM-249

WLF file
collapsing deltas CR-382
collapsing time steps CR-382

WLF files
collapsing events UM-232

converting to VCD CR-415
creating from VCD CR-310
filtering, combining CR-416
limiting size CR-382
log command CR-191
optimizing waveform viewing CR-382, UM-535
overview UM-226
repairing CR-420
saving CR-143, CR-144, UM-227
saving at intervals UM-231
specifying name CR-382

wlf2log command CR-413
wlf2vcd command CR-415
WLFCollapseMode .ini file variable UM-534
WLFFilename UM-535
wlfman command CR-416
wlfrecover command CR-420
work library UM-58

creating UM-60
workspace GR-15

code coverage GR-116
Files tab GR-116

write cell_report command CR-421
write format command CR-422
write list command CR-424
write preferences command CR-425
WRITE procedure, problems with UM-90
write report command CR-426
write timing command CR-427
write transcript command CR-428
write tssi command CR-429
write wave command CR-431

X

X
tracing unknowns UM-307

.Xdefaults file, controlling fonts GR-13
X propagation

disabling for entire design CR-378
disabling X generation on specific instances CR-

275
xml format

coverage reports UM-351
X-session

controlling fonts GR-13

Index
Y

-y CR-366

Z

zero delay elements UM-80
zero delay mode UM-145
zero-delay loop, infinite UM-81
zero-delay oscillation UM-81
zero-delay race condition UM-132
zoom

Dataflow window UM-305
from Wave toolbar buttons UM-249
saving range with bookmarks UM-250
with the mouse UM-249

zooming window panes GR-260

	Bookcase
	User’s Manual
	Table of Contents
	1 - Introduction
	ModelSim tool structure and verification flow
	ModelSim simulation task overview
	Basic steps for simulation
	Step 1 - Collecting Files and Mapping Libraries
	Step 2 - Compiling the design with vlog/vcom/sccom
	Step 3 - Loading the design for simulation
	Step 4 - Simulating the design
	Step 5- Debugging the design

	ModelSim modes of operation
	Command-line mode
	Batch mode

	ModelSim graphic interface overview
	Standards supported
	Assumptions
	Sections in this document
	What is an "object"
	Text conventions
	Where to find our documentation
	Download a free PDF reader with Search

	Technical support and updates

	2 - Projects
	Introduction
	What are projects?
	What are the benefits of projects?
	Project conversion between versions

	Getting started with projects
	Step 1 - Creating a new project
	Step 2 - Adding items to the project
	Step 3 - Compiling the files
	Step 4 - Simulating a design
	Other basic project operations

	The Project tab
	Sorting the list

	Changing compile order
	Auto-generating compile order
	Grouping files

	Creating a Simulation Configuration
	Optimization Configurations

	Organizing projects with folders
	Adding a folder

	Specifying file properties and project settings
	File compilation properties
	Project settings

	Accessing projects from the command line

	3 - Design libraries
	Design library overview
	Design unit information
	Working library versus resource libraries
	Archives

	Working with design libraries
	Creating a library
	Managing library contents
	Assigning a logical name to a design library
	Moving a library
	Setting up libraries for group use

	Specifying the resource libraries
	Verilog resource libraries
	VHDL resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	Rebuilding supplied libraries
	Regenerating your design libraries
	Maintaining 32-bit and 64-bit versions in the same library

	Referencing source files with location maps
	Using location mapping
	Pathname syntax
	How location mapping works
	Mapping with Tcl variables

	Importing FPGA libraries
	Protecting source code using -nodebug

	4 - VHDL simulation
	Compiling VHDL files
	Creating a design library
	Invoking the VHDL compiler
	Dependency checking
	Range and index checking
	Subprogram inlining
	Differences between language versions

	Simulating VHDL designs
	Simulator resolution limit
	Default binding
	Delta delays

	Simulating with an elaboration file
	Overview
	Elaboration file flow
	Creating an elaboration file
	Loading an elaboration file
	Modifying stimulus
	Using with the PLI or FLI
	Syntax
	Example

	Checkpointing and restoring simulations
	Checkpoint file contents
	Controlling checkpoint file compression
	The difference between checkpoint/restore and restart
	Using macros with restart and checkpoint/restore

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Writing strings and aggregates
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Flushing the TEXTIO buffer
	Providing stimulus

	VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking
	VITAL compliance warnings

	Compiling and simulating with accelerated VITAL packages
	Compiler options for VITAL optimization

	Util package
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	Foreign language interface
	Modeling memory
	’87 and ’93 example
	’02 example

	Affecting performance by cancelling scheduled events
	Converting an integer into a bit_vector

	5 - Verilog simulation
	Introduction
	ModelSim Verilog basic flow

	Compiling Verilog files
	Creating a design library
	Invoking the Verilog compiler
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler arguments
	Verilog-XL `uselib compiler directive
	Verilog configurations
	Verilog generate statements

	Optimizing Verilog designs
	Running vopt on your design
	Naming the optimized design
	Making the optimized flow the default
	Enabling design object visibility with the +acc option
	Optimizing gate-level designs
	Event order and optimized designs
	Timing checks in optimized designs

	Simulating Verilog designs
	Simulator resolution limit
	Event ordering in Verilog designs
	Negative timing check limits
	Verilog-XL compatible simulator arguments

	Simulating with an elaboration file
	Overview
	Elaboration file flow
	Creating an elaboration file
	Loading an elaboration file
	Modifying stimulus
	Using with the PLI or FLI
	Syntax
	Example

	Checkpointing and restoring simulations
	Checkpoint file contents
	Controlling checkpoint file compression
	The difference between checkpoint/restore and restart
	Using macros with restart and checkpoint/restore

	Cell libraries
	SDF timing annotation
	Delay modes

	System tasks and functions
	IEEE Std 1364 system tasks and functions
	Verilog-XL compatible system tasks and functions
	ModelSim Verilog system tasks and functions

	Compiler directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives
	ModelSim compiler directives

	Sparse memory modeling
	Manually marking sparse memories
	Automatically enabling sparse memories
	Combining automatic and manual modes
	Determining which memories were implemented as sparse
	Limitations

	Verilog PLI/VPI and SystemVerilog DPI

	6 - SystemC simulation
	Introduction
	Supported platforms and compiler versions
	Building gcc with custom configuration options
	HP Limitations for SystemC

	Usage flow for SystemC-only designs
	Compiling SystemC files
	Creating a design library
	Modifying SystemC source code
	Code modification examples
	Invoking the SystemC compiler
	Compiling optimized and/or debug code
	Specifying an alternate g++ installation
	Maintaining portability between OSCI and ModelSim
	Restrictions on compiling with HP aCC
	Switching platforms and compilation
	Using sccom vs. raw C++ compiler
	Issues with C++ templates

	Linking the compiled source
	sccom -link

	Simulating SystemC designs
	Loading the design
	Running simulation
	Simulator resolution limit
	Initialization and cleanup of SystemC state-based code

	Debugging the design
	Viewable SystemC objects
	Waveform compare
	Source-level debug

	SystemC object and type display in ModelSim
	Support for aggregates
	Viewing FIFOs

	Differences between ModelSim and the OSCI simulator
	Fixed point types
	OSCI 2.1 features supported

	Troubleshooting SystemC errors
	Unexplained behaviors during loading or runtime
	Errors during loading

	7 - Mixed-language simulation
	Usage flow for mixed-language simulations
	Separate compilers, common design libraries
	Access limitations in mixed-language designs
	Optimizing mixed designs
	Simulator resolution limit
	Runtime modeling semantics
	Hierarchical references in mixed HDL/SystemC designs

	Mapping data types
	Verilog to VHDL mappings
	VHDL to Verilog mappings
	Verilog and SystemC signal interaction and mappings
	VHDL and SystemC signal interaction and mappings

	VHDL: instantiating Verilog
	Verilog instantiation criteria
	Component declaration
	vgencomp component declaration
	Modules with unnamed ports

	Verilog: instantiating VHDL
	VHDL instantiation criteria
	Entity/architecture names and escaped identifiers
	Named port associations
	Generic associations
	SDF annotation

	SystemC: instantiating Verilog
	Verilog instantiation criteria
	SystemC foreign module declaration
	Parameter support for SystemC instantiating Verilog
	Example of parameter use

	Verilog: instantiating SystemC
	SystemC instantiation criteria
	Exporting SystemC modules
	Parameter support for Verilog instantiating SystemC
	Example of parameter use

	SystemC: instantiating VHDL
	VHDL instantiation criteria
	SystemC foreign module declaration
	Generic support for SystemC instantiating VHDL
	Example of generic use

	VHDL: instantiating SystemC
	SystemC instantiation criteria
	Component declaration
	vgencomp component declaration
	Exporting SystemC modules
	sccom -link
	Generic support for VHDL instantiating SystemC

	8 - WLF files (datasets) and virtuals
	WLF files (datasets)
	Saving a simulation to a WLF file
	Opening datasets
	Viewing dataset structure
	Managing multiple datasets
	Saving at intervals with Dataset Snapshot
	Collapsing time and delta steps

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	9 - Waveform analysis
	Introduction
	Objects you can view

	Wave window overview
	List window overview
	Adding objects to the Wave or List window
	Adding objects with drag and drop
	Adding objects with a menu command
	Adding objects with a command
	Adding objects with a window format file

	Measuring time with cursors in the Wave window
	Working with cursors
	Understanding cursor behavior
	Jumping to a signal transition

	Setting time markers in the List window
	Working with markers

	Zooming the Wave window display
	Zooming with menu commands
	Zooming with toolbar buttons
	Zooming with the mouse
	Saving zoom range and scroll position with bookmarks

	Searching in the Wave and List windows
	Finding signal names
	Searching for values or transitions
	Using the Expression Builder for expression searches

	Formatting the Wave window
	Setting Wave window display properties
	Formatting objects in the Wave window
	Dividing the Wave window
	Splitting Wave window panes

	Formatting the List window
	Setting List window display properties
	Formatting objects in the List window

	Saving the window format
	Printing and saving waveforms in the Wave window
	Saving a .eps file and printing under UNIX
	Printing on Windows platforms
	Printer page setup

	Saving List window data to a file
	Combining objects/creating busses
	Example

	Configuring new line triggering in the List window
	Using gating expressions to control triggering
	Sampling signals at a clock change

	Miscellaneous tasks
	Examining waveform values
	Displaying drivers of the selected waveform
	Sorting a group of objects in the Wave window
	Setting signal breakpoints in the Wave window

	Waveform Compare
	Mixed-language waveform compare support
	Three options for setting up a comparison
	Setting up a comparison with the GUI
	Starting a waveform comparison
	Adding signals, regions, and clocks
	Specifying the comparison method
	Setting compare options
	Viewing differences in the Wave window
	Viewing differences in the List window
	Viewing differences in textual format
	Saving and reloading comparison results
	Comparing hierarchical and flattened designs

	10 - Generating stimulus with Waveform Editor
	Introduction
	Limitations

	Getting started
	Using Waveform Editor prior to loading a design
	Using Waveform Editor after loading a design

	Creating waveforms from patterns
	Editing waveforms
	Selecting parts of the waveform
	Stretching and moving edges

	Simulating directly from waveform editor
	Exporting waveforms to a stimulus file
	Driving simulation with the saved stimulus file
	Signal mapping and importing EVCD files

	Using Waveform Compare with created waveforms
	Saving the waveform editor commands

	11 - Tracing signals with the Dataflow window
	Dataflow window overview
	Objects you can view

	Adding objects to the window
	Links to other windows
	Exploring the connectivity of your design
	Tracking your path through the design

	The embedded wave viewer
	Zooming and panning
	Zooming with toolbar buttons
	Zooming with the mouse
	Panning with the mouse

	Tracing events (causality)
	Tracing the source of an unknown (X)
	Finding objects by name in the Dataflow window
	Printing and saving the display
	Saving a .eps file and printing under UNIX
	Printing on Windows platforms

	Configuring page setup
	Symbol mapping
	Configuring window options

	12 - Profiling performance and memory use
	Platform information
	Introducing performance and memory profiling
	A statistical sampling profiler
	A memory allocation profiler

	Getting started
	Enabling the memory allocation profiler
	Enabling the statistical sampling profiler
	Collecting memory allocation and performance data
	Running the profiler on Windows with FLI/PLI/VPI code

	Interpreting profiler data
	Viewing profiler results
	The Ranked View
	The Call Tree view
	The Structural View

	Viewing profile details
	Integration with Source windows
	Analyzing C code performance
	Reporting profiler results

	13 - Measuring code coverage
	Introduction
	Usage flow for code coverage
	Supported types
	Important notes about coverage statistics

	Enabling code coverage
	Viewing coverage data in the Main window
	Viewing coverage data in the Source window
	Toggle coverage
	Enabling Toggle coverage
	Excluding nodes from Toggle coverage
	Viewing toggle coverage data in the Objects pane
	Toggle coverage reporting

	Filtering coverage data
	Excluding objects from coverage
	Excluding lines/files via the GUI
	Excluding lines/files with pragmas
	Excluding lines/files with a filter file
	Excluding condition and expression udp truth table lines and rows
	Excluding lines and rows with the coverage exclude command
	Excluding nodes from toggle statistics

	Reporting coverage data
	XML output
	Sample reports

	Saving and reloading coverage data
	From the command line
	From the graphic interface
	With the vcover utility

	Coverage statistics details
	Condition coverage
	Expression coverage

	14 - PSL Assertions
	What are assertions?
	Using assertions in ModelSim
	Embedding assertions in your code
	Writing assertions in an external file
	Understanding clock declarations
	Understanding assertion names
	Using endpoints in HDL code
	General assertion writing guidelines
	Compiling and simulating assertions
	Managing assertions
	Reporting on assertions
	Viewing assertions in the Wave window

	15 - Functional coverage with PSL and ModelSim
	Introduction
	Compiling and simulating functional coverage directives
	Configuring functional coverage directives
	Viewing functional coverage statistics
	Viewing coverage directives in the Wave window
	Reporting functional coverage statistics
	Saving functional coverage data
	Reloading/merging functional coverage data
	Clearing functional coverage data
	Creating a reactive testbench with endpoint directives

	16 - C Debug
	Introduction
	Supported platforms and gdb versions
	Running C Debug on Windows platforms

	Setting up C Debug
	Running C Debug from a DO file

	Setting breakpoints
	Stepping in C Debug
	Known problems with stepping in C Debug

	Finding function entry points with Auto find bp
	Identifying all registered function calls
	Enabling Auto step mode
	Example
	Auto find bp versus Auto step mode

	Debugging functions during elaboration
	FLI functions in initialization mode
	PLI functions in initialization mode
	VPI functions in initialization mode
	Completing design load

	Debugging functions when quitting simulation
	C Debug command reference

	17 - Signal Spy
	Introduction
	Designed for testbenches

	init_signal_driver
	init_signal_spy
	signal_force
	signal_release
	$init_signal_driver
	$init_signal_spy
	$signal_force
	$signal_release

	18 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for mixed VHDL and Verilog designs
	Interconnect delays
	Disabling timing checks
	Troubleshooting
	Specifying the wrong instance
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	19 - Value Change Dump (VCD) Files
	Creating a VCD file
	Flow for four-state VCD file
	Flow for extended VCD file
	Case sensitivity
	Checkpoint/restore and writing VCD files

	Using extended VCD as stimulus
	Simulating with input values from a VCD file
	Replacing instances with output values from a VCD file

	ModelSim VCD commands and VCD tasks
	Compressing files with VCD tasks

	A VCD file from source to output
	VHDL source code
	VCD simulator commands
	VCD output

	Capturing port driver data
	Supported TSSI states
	Strength values
	Port identifier code
	Example VCD output from vcd dumpports

	20 - Tcl and macros (DO files)
	Introduction
	Tcl features within ModelSim
	Tcl References

	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Macros (DO files)
	Creating DO files
	Using Parameters with DO files
	Deleting a file from a .do script
	Making macro parameters optional
	Useful commands for handling breakpoints and errors
	Error action in DO files

	Macro helper
	The Tcl Debugger
	Starting the debugger
	How it works
	The Chooser
	The Debugger
	Breakpoints
	Configuration

	TclPro Debugger

	A - ModelSim GUI changes
	Main window changes
	View menu
	Simulate menu
	Tools menu
	Window menu

	List window changes
	Memory window changes
	Signals (Objects) window
	Source window changes
	Variables (Locals) window

	B - ModelSim variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	Creating environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vlog] Verilog compiler control variables
	[vcom] VHDL compiler control variables
	[sccom] SystemC compiler control variables
	[vsim] simulator control variables
	[lmc] Logic Modeling variables
	[msg_system] message system variables
	Reading variable values from the INI file
	Commonly used INI variables

	Preference variables located in Tcl files
	Variable precedence
	Simulator state variables
	Referencing simulator state variables
	Special considerations for the now variable

	C - Error and warning messages
	ModelSim message system
	Message format
	Getting more information
	Changing message severity level

	Suppressing warning messages
	Suppressing VCOM warning messages
	Suppressing VLOG warning messages
	Suppressing VSIM warning messages

	Exit codes
	Miscellaneous messages
	Compilation of DPI export TFs error
	Empty port name warning
	Lock message
	Metavalue detected warning
	Sensitivity list warning
	Tcl Initialization error 2
	Too few port connections
	VSIM license lost
	Failed to find libswift entry

	sccom error messages
	Failed to load sc lib error: undefined symbol
	Multiply defined symbols

	D - Verilog PLI / VPI / DPI
	Introduction
	Registering PLI applications
	Registering VPI applications
	Example

	Registering DPI applications
	DPI use flow
	Steps in flow

	Compiling and linking C applications for PLI/VPI/DPI
	Compiling and linking C++ applications for PLI/VPI/DPI
	Specifying application files to load
	PLI/VPI file loading
	DPI file loading
	Loading shared objects with global symbol visibility

	PLI example
	VPI example
	DPI example
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	SystemVerilog DPI access routines
	Verilog-XL compatible routines
	Using 64-bit ModelSim with 32-bit PLI/VPI/DPI Applications
	64-bit support for PLI
	PLI/VPI tracing
	The purpose of tracing files
	Invoking a trace
	Syntax
	Arguments
	Examples

	Debugging PLI/VPI/DPI application code
	HP-UX specific warnings

	E - ModelSim shortcuts
	Command shortcuts
	Command history shortcuts
	Main and Source window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Wave window mouse and keyboard shortcuts

	F - System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	G - Logic Modeling SmartModels
	VHDL SmartModel interface
	Enabling the interface
	Creating foreign architectures with sm_entity
	Vector ports
	Command channel
	SmartModel Windows
	Memory arrays

	Verilog SmartModel interface
	Linking the LMTV interface to the simulator

	H - Logic Modeling hardware models
	VHDL hardware model interface

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

